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MULTISENSOR DETECTION STUDY

1.0 INTRODUCTION

The intent of the work which is reported herein is to explore the
possibility that improvements can be made in the initial detection of
signals in noise using multiple sensors, arbitrarily located, by basing the
detection strategy upon a multivariate statistical approach.
1.1 Background

This question of detection is part of the larger task depicted by
Figure 1-1, in which the data from m sensors are somehow to be combined
and operated upon to produce "decisions and numbers". The "decisions" we
shall be concerned with here consist of detection of a source of interest
in the medium being considered (e.g., underwater) along with whatever
parameter estimates ("numbers"), are requ%red to carry out detection. We
restrict our attention to a single source, whose waveform we denote by s(t;6)
to indicate variation in time and dependence upon certain parameters 6.

Whether this source of interest is present or not, the medium is such that

there exists at each of m sensors a noise waveform "i(t’“i)’ i=1, 2,...,m;
the noise parameters {"i} are in general different in value at each sensor.
In this work, the signal and noise parameters are considered to be unknown
a priori and therefore must be estimated. Also both random and deterministic
signals are considered.

By "sensor" we shall refer in this work to whatever appropriate trans-
ducer and conditioning may be required to acquire data, plus additional
processing such as sampling and analog-to-digital conversion. In some instances

a discrete Fourier transform (DFT) is performed to obtain what is taken

to be "sensor data". The physical locations of the sensors are assumed to be
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different, so that observation in both space and time is performed by

collection of sensors, whose outputs are assumed to be avaijlable to a

centralized processor, not necessarily in "real time". Our primary concern

is with the structure of this processor; therefore, our modellibg effbrt
begins with the "data" xi(t) from the m channels, as called out in Figure
1-1.

1.1.1 Concept of Data Vectors,Matrix..

At a given sampling time tk the data from the sensors may be
considered asan(ﬁlxl) vectorugk. Over an observation period if n such
vector samples are collected, the totality of the data may be represented
by an (mxn) matrix X as illustrated in Figure 1-2. The columns of the

matrix are the vector data samples:

x = {519 Ezgau.ék,oo.,zn}o (1‘1)
The elements bf the data matrix are
Xk = xi(tk)’i =1, 2,...,m,
k=1, 2,....n. (1-2)

As discussed in Section 1.3, for narrowband signals and noise, the
{xik} can be cohsidered complex numbers describing the waveform components
referenced to the center frequency. For broadband signals and noise, .the
{xik} are more appropriately taken to be the complex Fourier coefficients
of the input waveforms.

1.1.2 Objectives of the Study

An earlier work [1] explored the general subject of maximum 1ikelihood

(ML) signal detection and estimation when the data vector and matrix formulations

are used. It was shown that in general, ML processors of vector data are

analogous to their familiar scalar counterparts, but are not simple




i % MBI A A I

v

X1YivyW vivad 2-1 3¥N9Id

595590044 Wopuey ueissney A[jurop W

-
M

‘Aes ¢j0 sa|dwes e3RQ UW : ("7X}

Ftu + (Fays = fty e L

" o T s|auuey)

- JUL]

XTYLyW vivd




i Ot b O ctosat, ™ dot, WA Ao b 4 3. b

' "building block" or modular extensions of scalar processors. For example,
the analogy to noise power (variance) on a single sensor is, for multiple

sensors, the determinant of the matrix of covariance between pairs of

sensors. This quantity is a nonlinear combination of the single channel
variances and also of correlations; thus something more than just putting
together m scalar processors is required to process m sensors properly.

In this study, the theme of ML detection using data from multiple
sensors is pursued further, with the following objectives:

(a) Describe the theoretical performance of the ML detector of
multisensor (multivariate) signals in noise, using conventional figures
of merit.

(b) Develop an computer program which implements the ML detector
and which can be used in experiments, also giving an indication of the
complexity of the ML my]tivariate detector.

1.2 Methodo]ogx

In accordance with its objectives, this study employs the following

analytical procedures.

1.2.1 Theoretical Base

In order to determine the maximum likelihood detection strategy
using the sensor data these procedures are followed:

(a) Model the joint probability density function (pdf) for the data

X at the sensor outputs under the hypotheses HO: noise only, and H1: signal

plus noise.

(b) Take the pdf's p;(X;8,n|H;) and py(Xsn|Hy) to be 1ikelihood
functions with 6 and n representing signal and noise parameters; respectively.

Maximize these likelihood functions by deriving maximum likelihood (ML)

y estimates 6 and n for these parameters, which are NOT ASSUMED TO BE KNOWN

a priori.
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(c) Use the ML detection criterion

H
o R 1
A(X) = py(x38,n H)po(xsn[H)) 2 1 (1-3)
1 17770 0 H
0
to find the statistic or function of the data z(X) which tests the
hypothesis HO. That is, the above equation reduces to
Hy
2(X) <z, (1-8)
Ho

where z0 is a threshold.

(d) Determine the distribution of the test statistic z(X) so that

the probability integrals

Q(zo;ano) = Pr{z>zOIHo} = Pr{H0 rejected |H0} (1-5)
and

Q(zp36,n[H,) = Priz>zy|H,} = Pr{H, rejected |H,} (1-5)

may be computed.
1.2.2 Application

The ML detection strategy is applied to the sensor detection problem
by carrying out the next steps:

(a) Compute the thresholds z,p which satisfy

Q(ZOF;anO) = PFA (1‘7)
for various values of the false alarm probability PFA and using those
thresholds, compute the detection probability

Pp = Qlzyps0,n]Hy) (1-8)

as a function of the actual values of the parameters (thus obtaining

receiver operating characteristics or ROC).




(b) Relate the statistical detection parameters to the system
variables (number of sensors, number of samples) as well as to conventional
input data parameters (signal-to-noise ratios, signal and noise inter-sensor
correlations, signal phases, etc.) in order to show the dependencies and
to permit comparisons with other systems.

(c) Develop a computer program.which accepts data in the form
studied and which performs the staﬁistica] procedures jnvo]ved in the
detection strategies; exgrcjse the.prggram wi;h simulated data to the
extent necessary to verify that it works as predicted by theory.

1.2.3 Assessment

The performance of the multivariate detection strategy is to be
assessed with respect to the following considerations:

(a) Minimum detectable signal.

(b) Complexity and storage requirements of implementation.

(c) Compatibility of configuration with other signal processing tasks.

1.3 «+ Models and Notation

’

A glossary of mathematical symbols and notation employed is given at the
end of the report, “Iye concept'of denoting the n samples of waveforms
at m sensors by a data matrix X has been introduced previously. Although through-
out the report the data is considered as narrowband (complex) time domain sam-
pled data, as described next, the model used can also be extended to broadband
data as developed by discrete Fourier transforms, as shown in Section 1.3.2.
Complex data are treated to cover the subject thoroughly; real (baseband) data
is somewhat simpler than the complex, and can be derived from it.

1.3.1 Narrowband Signals and Noise

The notation which is used is based upon the assumption that the
vector x(t) of the m waveforms, when referenced to a given frequency and

phase, can be represented by the narrowband (Rician) decomposition

y v e e e




x(t) = u(t) cos{ut + ¢) - v(t) sin(ut + ¢), (1-9)
in which u(t) and v(t) are the in-phase and quadrature components of x(t)
with respect to cos(wt + ¢). We may just as well represent x(t) as the
(1owpass) complex vector waveform

x(t) = u(t) + jv(t), § = /-1, (1-10)
and the matrix of samples is

X= 1% = Ty + jv'].k'|| = U+ jV. (1-11)
The columns of these matrices retain the interpretation

(X oo =X, = x(t ), (1-12

ik'k=ky " X, ko )

while the rows are the observations of the output of a single sensor over
time: |

(Xik)i=io = {xio(tk), k = 1’ 2,..-,"}. N (1-13)

An example of how this data may be collected in practice is diagrammed in

- Figure 1-3a.

1.3.2 Multivariate Gaussian Model

Now if the waveforms are from stationary, jointly Gaussian random
processes with (mxm) covariance matrix x =||o, || and mean vector
u = a+ jb, then the pdf for a single vector data sample is
p(xsu z) = [(zm)"|zi77} exp{-%[(!k-é)'z-l(_qk-_a)

+ (v -0) 'z My, D)3} (1-14)

By noticing that the scalar quantities in the exponent may be understood

as traces of matrices we can write

(y*-a)'Z'l(y_k-g) tr[(yk-g)'t'l(gk-g)] (scalar)

trlz"Hu,-a) (g, -2)'] (1-15)

TRV R R
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FIGURE 1-3. SCHEMATIC REPRESENTATION OF POSSIBLE SOURCES OF DATA
AS MODELLED (not necessarily in real time).
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since tr(PQ) = tr(QP). Therefore the pdf of X, can alternately be written
?
. _ m -1 )
P(xsusz) = [(21)7]2]]7" etrl-5 = l(ék'g)(ﬁk - w*.  (1-16)
This form takes advantage of the facts that
tr{PQ} = tr[P-Re{Q}], P = P'(real), Q = Q*; (1-17)
tr[qu] + tr[PQZ] = tr[P(Ql + Qz)]; (1_18)
| and that (1-a)(4,-a)" + (v -b)(y,-b)" = Relxyx.*). (1-19)
‘ For independent data vector samples, the joint pdf €or all the
observed data is given by
n n .
_ - m -n y -
p(X) = TT plx) = [(2n)"|5)] exp)-—%—Z[(!k-E)'; Yy -2)
k=1 .
+ (xk-p_)'z'l(g(-g)]"x
1 n
_ m -n -1 .
= [(22)7|z]77" etri5x Z (x 2 (x-p)*.  (1-20)
_ k=1
Also, by defining a matrix (m x n) whose columns all are equal to the
mean vector,
M= (E: M, _E_,---s}i)’ (1_21)
‘f’ ) then we may utilize the observation that
3 D (en g = (XM (x-m)* (1-22)
: k
;|
’ to write, finally,
- 1 -1
(1) = [zl etr§ Moo (129
'. The identification of the mean vector and covariance matrix with signal
and noise parameters will be made in the text in various ways. However
throughout the report we shall assume that Gaussian form is suitable for
]‘ » representing the data.

s
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1.3.3 Extension to Broadband Signals and Noise

In many applications the narrowband representation just discussed
is not suitable. However, the same pdf model (1-23) can be used if the
interpretation of the data matrix X is changed from time samples to Fourier
coefficients , as illustrated in Figure 1-3b.

Consider that the time sampling takes place as previously described
and that the n (real) samples from each gensor are transformed by a discrete
Fourier transform (OFT). A new (complex) data matrix F = ||g;.]] is then

created. Its element at the i:th sensor and r:th frequency bin is given

by (7]

n
Sir ='?1; Z; X5k wik-) oy . e_xp{-qu/n}. (1-24)

Assuming that the time samples have zero means, the covariance

between elements is

n_n '
1 2 :E : r(k-1)-s(£-1) (1-25)
- E .

E 351 r:gpsi

If the time sample vectors X, are independent, then
n .
Yy = (.1 (r-s)(k-1)
Ez‘ircps; 2 Eixikxpkf "

k=1 ’

n
=L ! (r-s)(k-1) _ % -
2 %ip Zw - _FE Sps* (1-26)

K=1

That is, if the X, are independent, then so also are the frequency sample

vectors 5_', which form the columns of F, and it is also evident from (1-28)

that

PRS-




*
E§§¥5rf = %-E = % E%éki*fg, X independent . * (1-27)

For x(t) real, the element obey the symmetry relationships

Eil" = Ei,n-r’ r=1,2,...,n-1 (1-28)

so that in total for each sensor the n time samples produce n spectral

samples (g-+ 1 real, %—- 1 imaginary).' If a subset of ne< %-- 1 frequencies

is selected for processing (r=r0> 0 to o + ne - 1 <£2'-), then there are N

complex vectors in fhe data base.
1.3.4 Distribution of DFT Components
The real and imaginary components ErR and Er1 of these vectors are

independent, with covariance matrix

. N S
EgérRirRz - E}irliré “7nl (1-29)
" Therefore the ng vectors have the joint pd:
-n
-1
p(Fing) = [(2n)" 155511 exp}-ni Ll érf. (1-30)
r=1

If the time samples contain a deterministic signal, then (1-33)

is modified to become

n
) F
p(Fing) = [(2x)™ "21? z|] F exp}-nZ(g‘. < p)* ):'1(3;r W)
r=
' (1-31)

where ¥y is used to write the DFT component vectors of the signal.

It is evident, then that solution of the narrowband detection
problem for the time-sampling model of the data X will furnish also the

solution of the broadband detection problems for the DFT model of the data

*The independent sampling assumption is not difficult to justify in the

case of one sensor since it is a matter of bandwidth: For multiple sensors,
one can expect cross correlations to occur between different sensors at
different times for directional sources. By ignoring this, in effect we

are requiring that either the sensor field is small or that the data are
aligned in time (i.e., the array is steered in the direction of the source).
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F when.it is assumed that ¥, = ¥. This assumption corresponds to a signal
whose spectrum is "flat" over the bandwidth spanned by the e frequency

bins. For this reason, only the narrowband, time domain case is treated

in detail.
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2.0 MULTIVARIATE MAXIMUM LIKELIHOOD DETECTION STATISTICS

In this chapter the likelihood functions corresponding to hypotheses

concerning signal and noise parameters are formed and used to derive statistics

or functions of the data for testing the hypothéses (detection). The true
values of the parameters are treated as unknown and are estimated so as to
maximize the 1ikelihood funcotions under the given hypothesis.

2.1 Unknown_Deterministic Signals

If the signal portion {§k} of the data vectors may be considered to be
constant over the interval in which the samples are observed, then we may
use the model |

E{x} =u=s,5 =5, k=1,2,...,n (2-1)
This model corresponds to a signal whose amplitude and phase with respect to
the reference frequency and phase are "slowly varying" or constant (though
different in value at each sensor), an idealistic extension of the narrowband
assumption |

Bandwidth (;igna]) << center frequency (2-2)
The covariance matrix r© of the data in this case corresponds to that of the
noise component. ‘

If instead of time samples the data are Fourier coefficents, the
assumption that the mean vector is a constant (over frequency) corresponds to
a signal whose spectrum is flat over the n frequency bins.

Detection of the signal under these assumptions then is equivalent to
choosing between the hypothesis

HO: u=0. ' (2-3a)
and its alternative Hy: u # 0. (2-3b)

2.1.1 Multivariate Processing

The pdf of the data given the presence of a signal is

p(Xsw,EJH) = [(20) ™z} etr % z’l(x-M)(X-M)". (2-4)

Taking this function for the 1ikelihood function corresponding to H1 and

i
J




“a

maximizing it with respect to the unknown parameters u and £ results in [1-3]

n
~ 1
¥ = ;E X (2-5)
k=1
and n
F= o ) (-2 x-p)* 8 LA (2-6)
2n k < ¢ T B 2n .

That is, the ML estimates for the mean vector u and the covariance matrix
I are the sample mean vector u and the sample covariance £. If analogous
to the matrix M previously defined, we define the (mxn) matrix

X & (B0 5 (2-7)
then we can write

~

b

H.

1 Y
Eﬁ-(X-XO)(X-XO)* = %n (XX* - XOXO*)

g (XM (X-M)* - 2 (6 = Wi - w*. (2-8)

We are not here concerned with the properties of these estimates, except
that they are statistically independent as will be discussed. Substituting
the estimates in the pdf (2-4) yields the H; likelihood function

L (0 = max plX;p,]Hy) = [(2nr)"|E[17" ™. (2-9)
U

Under H, the mean is assumed zero and the covariance ML estimate is

0
< i .
f:l X, X, * = -—I—XX*=i—A (2-10)
0 7n 2=k Zn 7n 70
k:
with the resulting likelihood function
Lo(X) = max p(xsE|Hy) = [(2)"|5,]17" e (2-11)
0 L

The maximum 1ikelihood detection in this case would be implemented by the

test of the statistic

1Al *
A(X) = L 1xx£x§ ioxo*‘ , (2-12)

15
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This

the ratio of the determinants of the estimated covariance matrices.
eipression may be reduced to another form as follows:
ax) = JAI7Y [Agl = (AN AR G rl = TenATE N (2-13)

Middleton [4) gives the identity

11 + 6| = eXp)- > () g s"!; | (2-14)

r=1

here, since tr[(A—lﬁ*)r] tr [A-lﬁ_(i*l\—‘y:)r-l_‘l*]

3 is scalar)

1]
—
=

»*

-
[T~
=
oo
ﬁ
L
—
=)
*
3>

exp {- T

]
]
~~
1
=]
=)
*
>l
[
e
'
1
~
3
A ——

we have A(X)

= exp{en]l + n i

*A-li]{ =14+n ﬁ.*A-l_‘_‘;_' (2-15)

The ML detector performs the test
!
v < Z,.
= 0

Ho

-1 (2-16)

z2(X) = nﬁ*A

Computational forms are to be discussed in another section; v.r next
concern is to determine the distribution of this test statistic so that
probabilities of false alarm and detection may be calculated.

2.1.2 Distribution of the Multivariate Test Statistic

If the data were real instead of complex, then the test statistic

(2-16) could be identified with the "Hotelling 12 statistic" [2, 5], so

16
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named because for m=1 it reduces to the square of the familiar Student's

t-statistic (used for testing the mean of a normal population of unknown

-variance). It is shown by Anderson [2] that the T2 statistic is distributed

as Fisher's nbncentra] F-statistic with m and n-m degrees of freedom:

. . m
.z(x) distributed as ﬁ:ﬁme,n-m(x)' X real, (2-17)

where the noncentrality parameter A is
A =na' £la, (2-18) %
to use a = Re{c} to represent real data (r is the tfue noise covariance |
matrix).
.The question now is, what-is thé corresponding distribution for

complex data? In Appendix A it:is shown that in this case

. e m oo '
z(X) distributed as e F2m,2(n-m)(al" X complex, (2-19)

where the noncentrality parameter now is
A= na' t-l a + nb' 2-1 b= n_y_*Z—l Y. " (2-20)

2.1.3 Combined Single-Sensor Processing

The stated objectives of this study include determining what
improvements in detection performance may be obtained by using muitivariate
processing of multiple sensor data, rather than someé form of modular
or "built up" approach based upon single-sensor processing. The fact
that the ML detector has been shown to be indeed a multivariate process&r
is reason enough to expect improvements. lHowever, it is natural to wonder
just how much improvement can‘be expected, since multivariate processing
at least seems to be a complicated procedure.

In order to provide a measure for detection improvements,'we now
consider ways of combining single-sensor detection processing (performance

figures of merit are discussed in Chapter 4). The test statistic for a

single-sensor is found by substituting m=1 into the multivariate expression,

(2-12) to get at the ith sensor




. 2 72 ii ¥ nhy
A (X5) = 0g sloy 5 =
ii
=1+ n|i|%/a (2-21)
i ii?
where
a [x, = |2=2n/2\ | (2-22a)
ii M2k = ¥yl = enoy 4 ~eca
k=1 .
and
n .
~ 21 X (2-22b)
i n ik -
k=1
are the sample variance and mean. From (2-19) we know that
_ 1~ 12 s e 1
z.(x;) = quil /a;; distfibuted as 3 F2,2n-2(xi) (2-23)
and the noncentrality parameter x% is re]atedAio thé true mean and
variance at sensor i by
)‘.i = nluilzlog- (2—24)

One method for combining these functions of the data at single
sensors is to sum or average them, as illustrated in Figure 2-1 when
the combihing operation is addition. That, is we can create a single

test statistic from the m sensors by calculating

m
= =1
he = (X) = Z Ay (X5)
i=1
m
=140 15,12/, (2-25)
i1

Another method which follows naturally from the multivariate case is
to combine the single sensor -test statistic by forming their product.
In effect, this is the multivariate solution for the special case of

jndependence between  sensor noises.




Unfortunately, the distribution for either of these combinations
has not been found, so their detection performances cannot be calculated.

A method which can be evaluated is the following: perform individual
detections for each sensor. If the decision at sensor i is “SIGNAL,"
assign the value ¥; = 1; if the decision is “NO SIGNAL” at the single sensor
i, assign the value Y3 =0. Then add up the {y;} and decide for the

collection of sensors whether a signal is present using the rule

STGNAL
vi % k, O<k<m. (2:26)
NO SIGNAL

i=1 ,
This type of "majority vote" technique may be evaluated fairly readily.

D>

Za

The threshold (identical) at each sensor is chosen by requiring that
m

Prizy > k|Hy) = E ;(?)pg‘(l-pF)m'r = Ppy(given) (2-27a)
r=k

and solving for Pp as a function of PFA and k. Then the required .

individual sensor detection parameters (all equal to Xd) are found by

requiring that

_ ) {m) r m-r _ .
Priz, > kIHI} = \r/PD (l—pD) = PD(gwen) (2-27b)
r=k
the solution for pp can be related to Ap-
Without regard to the distribution of the data (except assuming
sensor data are independent) we may calculate Pg and Pp for given PFA

and PD. For PFA= .01 and PD= .9, the‘ results are

m f_f_ _p_Q decision rule

2 .1 .9487 2 out of 2 (k=2)
3 0589 .8042 2 out of 3 (k=2)
4 .0420 .6795 2 out of 4 (k=2)

5 .1056 .7534 3 out of 5 (k=3)
10 .1504 .6458 5 out of 10 (k=5)
20 .2498 .6145 10 out of 20 (k =10)
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FIGURE 2-1. MULTIVARIATE VS. COMBINED SINGLE-SENSOR PROCESSING. 1
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The value of Pg determines the threshold and one then computes the
A required to achieve a single sensor detection probability of Pp-
How this is done is shown in Section 3.1; each sensor decision is based

on the F-statistic distribution (2-19) with m=1.

2.2 Random Signals

If the signal portion {§k} of the data vectors may be considered
to be independent sdamples of an m-dimensional, zero-mean random process,
then we may use the model
E{x}=u =0, k=1, 2,...,n. (2-28)
The covariance matrix ¢ of the data in this case corresponds to
that of the noise component pglus that of the sSignal component, when present.
Detection of the signal under these assumptions then is equivalent

to choosing between the hypothesis

HO: L= Znoise =1

0 (2-29a)
and its alternative HI: =L ice” ?signa] 1. (2-29b)

2.2.1 Multivariate Processing

The pdf of the data given the presence of a signal is

m - 1 -1 v
p(X:EIH) = [(25)7|z,17" etr{-3 27; Xx*), _ (2-30)
where I = znoise + 2signa]' Maximizing with rgspect to the unknown matrix

I, results in the estimate

-~

n
A nr -k i
' *7n XX* = o0 Ao (2-31)
k=1

and substituting the estimate in the pdf yields the likelihood function
Ly(X) = [(2a)" [£) (37" ™. - (2-32)

The H, 1ikelihood function was found previously (equation (2-11)).

0
Immediately we find that the 1ikelihood ratio is identicalily one for testing

these hypotheses because both Io and L, are estimated by the same quantity,

P




A0/2n. Put simply, we cannot tell the difference between signal plus noise

and noise only, under these assumptions. Therefore, the hypdtheses need
to be modified by additional assumptions.

Let the noise at each sensor be assumed independent of noise at

.different sensors, that is, let us take I to be diagonal:

[ - A2 2 2 2 = ' - 3
HO‘ L= dla(ol, oZ""’ém)'}:O'  (2-33)

Under this hypothesis, the pdf of the data is

m -n m n
p(X; £g|Hy) = [(21:)"' 1];1; of] expi-% _5_ E Ixiklzlof . (2-34)
i=1 k=1

Maximizing this pdf with respect to the noise powers {°$} yields the estimates
n
2
2_ 1 2: w122 L
i = zn 2 il” = 7 (Rgdyy (2-35)
k=1
and the likelihood function
m A}n
Lo(X) = [(zn)'“ T of] e ™, (2-36)
i=1

The 1ikelihood ratio test then becomes

~ n o 15 TT(RD.: T
[A(x)] - =f°= = V‘g]nnf 1, (2-37)

1 0

that is, if the.product of the diagonals of the sample covariance matrix
A0 is greater than its determinant, then we decide that there is some
correlation existing between data from different sensors because a signal
is present. '

For example, suppose that we are examining data. from two sensors

(m=2). Then the test is

x

- 1/n a,.a 1 _
[A(xil . t11%22 - 3 -IR(H 31 (2-38a)

2
3113271215l
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or

la;,]2 M1
R(X)E—E—l—g———- : 0. (2-38b)
11%22 H}

Here R(X) is the estimated square of the cross-correlation coefficient

between sensors 1 and 2:

L -, 2
12> %%l

k=1 1.l
2 2 2t

(i:' ST )g:l’(Zk' )

k=1 =1

If the data in this case wefe the Fourier coefficients at a single

R(X) = (2-38c)

frequency, then R(X) would correspond to what is called the "magnitude
squared coherence function" estimate at that frequency [8].

For m sensors we can interpret the test statistic given by (2-37)

by further deveiopment:

-'T(A )ik - = r Y ‘
—Ar = 1R - e E £ er(m R )
rzl

AV X

0

In this relation we have used (2-14) and have defined the matrix of sample

correlation coefficients by

0 P12 Pr3--+- Py
b 0 P P a
12 23 2m .
YRS P S,
: : T Va..a_
= . o 0 ii%r
5 3 5 ...
| PIm "2m  P3m i (2-40)
The trace of R is zero, and we can rewrite (2-39) as
H .
1 A
JurR? 1 trR¥+...2 0. (2-81)
Hl
0

Now, the traces of the powers of R are

ek DD by By - 2 165,12
a—

isr

i



3

1
Since lairlkl’ we can see that an approximation to the test (2-41)

trRS =ZZZ B brp Bpi» etc. : (2-42)
rop

would be to use the first term, or the statistic

2(X) = 3 trR2(x) = z 165,12

i<r

2 |E""i el

i<r Kk

= ‘ 3 N : (2-43)
D i xgd 1%l
.k . k

This quantity is simply the sum of the magnitude squared of all the measured

oorrelation coefficients between sensors.

2.2.2 Distribution of the Multivariate Test Statistic

Ip order to set a threshold for the test, we need to determine its
distribution. For two sensors this task is not too difficult; in Appendix

D, the pdf for z(X) = |812]2 is shown to be
p(z) = (n-1)(1-p5)" (1-2)"2 F, (n,n31303,2), (2-44)

where Pq2 is the true correlation coefficient and the 2Fl( ) is the Gaussian
hypergeometric function. This expression is in complete agreement with the

pdf for the magnitude squared coherence function estimate reported in [8],

~ which also gives the distribution function (see Figure 2-2)

Pz(zo) = Pr{zfzo}

2 T n-
l-plz 1—20 k 2
S Tz,) 2halkelmaliegpzg).
1-p5.,2 - 1-p,,2
12°0| k=0 1270 (2-45)

At

The more general case is straightforward but extremely complicated

[9, 10]; so much so, that the general practice among statisticians is to

calculate moments of the test statistic (and these are tractable for H6 only!).

T ae
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(a) Probability density function (normalized by maximum value)
for random signal test statistic, correlation varied (n=32).

i.
' .9
Pr{z«< zo)
.5
1
o+ R 4
0 - .5 1.0 °
(b) Cumulative distribution function for random signal test statistic,
correlation varied (n=32).

FIGURE 2-2. DISTR%BUTIO? g; RANDOM SIGNAL TEST STATISTIC FOR TWO SENSORS
from [8
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Then the probability of rejecting Ho (false alarm) is obtained by fitting
a pdf to the moments. 1In Appendix B it is shown that the moments of

z(X) = |I + RI"l are

WP B(nwilok, kD) |
E{z } j];l; B(AHIK, k-ﬂ)—' (2-46)

By noting that 1
B(n«v+l-k, k-1) i}’; dx x"'k-\’(l-z)k-2

1
=f0 dx XV pg(x3n-kil, k-1) (2-47)
we are able to say that the inverse of z is distributed as the product of

m-1 independent beta-distributed variables. But again, this is not especially
helpful for more than a few sensors. So the moment method is the reasonable

way to proceed, and is considered further in the next chapter.




3.0 THEORETICAL CALCULATIONS

A large part of the work consists of obtaining numerical results

to portray the theory developed and to enable assessment of the

detection procedures. In this section the various computational

methods used are explained and the results tabulated. Computational

features of any software for implementing the detectors are considered

separately in another chapter.

3.1 Probability Integral for the F-statistic

Both detection statistics being compared may be treated by

considering the probability

Pr{FZn,Z(n-m)()‘)m} =de p(F|n,m;x).
n

z Q(n|2n,2(n-m);x)

This probability is given by [6]

., : ' et Kk
' ﬂ Q(n|2n,2n-2m;2) = e 2 EQ—{(—?-L I (n-m, mk)  (3-2a)
k=0
where x = ﬁ:gsziﬁ; (3-2b)

and Pearson's incomplete Beta function is given by

Ix(n-m, mtk) = 1 - Il~x(m+k’ n-m)

’ X
n-m-1 mtk-1
= g S {1-8) (3-3)
B(n-m, mt+k) :
0 :
i
» A particularly simple computational form is :
mk-1

Ix(n-m, mek) = X7 E ‘-l;—),()—r- (n-m)r,
r=0




oty
E]

E ' using (n-m)r z (n-m)(n-m+1)...(n-m +-r-1). (3-5)

~rwon. -

3.1.1 False Alarm Threshold

1 For no signal, =0 and it is obvious from equation (3-2) that
{ )
i * the probability of false alarm is computed using

| Pep = Q(20|2n, 2n-2m,0)

. - - - __nh-m -
? | . = Ixo(" m,m), X0 = vomt nzy - (3-6)

Since we wish to calculate the threshold Z, {or xo) for given values

of PFA’ it was convenient to perform the calculation of (3-6) using
(3-4) on a calculator (hp 34C), iterating on Xg until the desired
Ppp Was obtained. (Program P-1).

For the special case of m=1, which applies to a single sensor,

(3-6) reduces to the simple form (see (3-5))

Q(zgl2n, 2n-2) = x37" . (3-7)

Table 3-1 gives z, and Xq for PFA = .1, .01, and .001 respectively.

3.1.2 Detection Probability

Given the threshold corresponding to a chosen false alarm

probability the probability of detection Pp is computed using (3-2) with
n= zg. That is, PD = Q(zol2n, 2n-2m,1) = PD(A). This was done using ff

|
4 the FORTRAN program P-2. The results are tabulated in Table 3-2. y

The behavior of the probability of detection can be understood

by considering Figures 3-1 and 3-2, which are plots of data selected

’ from the tables.




PFA m n
! 10 20 50 100 200
]0-] 1 .774267 .885867 .954095 .977010 .988496
? 2.6239 2.4479 2.3375 2.3296 2.3160
2 .63164 .810237 .922922 .961279 . 980595
2.33272 2.10604 2.00436 1.97375 1.93932
3 .50992 .743495 .89501 .947135 .973477
2.24255 1.95499 1.83779 1.80471 1.78913 ;
4 .40058 .68141 .868716 .933764 .966738 ;
' 2.24457 1.87018 1.73793 1.70243 1.68591 :
;i 5 .30097 .62247 .84345 .920878 .960233 ’
*1 2.32259 1.81951 1.67046 1.63248 1.61514 !
_ 10 .35793 .72559 .860288 .929548
! 1.79384 1.51276 1.46161 1.44004
- 20 .510666 .74769 .872118
4 ; 1.43734 1.34981 1.31970
- 10-2 1 .599484 .784760 .910298 .954548 .977124
‘ 6.0129 5.2112 4.8285 4.7140 4.6589
. 2 .45595 .6982 .87207 .93482 .96711
‘ 4.77289 3.89029 3.52073 3.41651 3.33284
; 3 .3437 .62593 .83929 .91779 .958431
{ 4.45553 3.38653 2.99990 2.8962?2 2.84809
‘ 4 .25001 .56125 .80925 .90209 .95041
} 4.49976 3.12695 2.71069 2.60488 2.55670
g 5 .17098 .50175 .78095 .88721 .94279
! 4.84864 2.97907 2.52443 2.41545 2.36658
10 .25395 .6541 .81954 .90792
2.93778 2.11527 1.98177 1.92695
i 20 .43655 .69929 .84515
f 1.93603 1.72009 1.64900
3 10-3 1 .464159 .695193 .868511 .932603 .965883
10.389912 8.330548 7.418375 7.154455 7.029047
2 .3349 .60661 .82662 .91051 .95455
H 7.943864 5.836551 5.033897 4.815993 4.713792
3 .23885 .53459 .79131 .89173 .944863
7.435699 4.933357 4.131727 3.925773  3.831945
. 4 .16285 .47145 .75936 .87459 .936
'ﬂ 7.710930 4.484463 3.644332 3.441430 3.350427
; 5 .10253 .41445 .7296 .8585 .92765
8.753243 4.238509 3.335526 3.131625 3.041718
| 10 .18904 .59904 .78655 .890005
\ 4,289886 2.677350 2.442375 2.348195
‘ 20 .38378 .66204 .82372
4 2.408489 2.041931 1.926043
PFA = Q(20|2m,2n-2m) = Ixo(n-m,m), Xq = (n-m)/(n-m + mzo)
Table entries: xg (top), 2,
4 TABLE 3-1. FALSE ALARM THRESHOLDS FOR F-STATISTIC.
' b 3
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Figure 3-1 shows PD vs i, the noncentrality parameter, for n=50
and various values of PFA and m. This type of plot is also known as

"receiver operating characteristics" (ROC). As »»0 (-= dB), PD(A)-*PFA

and this trend can be observed on the left side of the figure. Also
the approach of PD(A) + 1 as A » » is seen on the right.
What is interesting in this figure is thai for all PFA’

PD(A; ml) < PD(A; m2) for m > m,. (3-8)

This behavior is attributable to the loss of degrees of freedom in
estimating p and Z; the larger m given n, the smaller the "left over" f{
degrees of freedom 2(n-m). Thus, for example, if Pep = -1 and a 3
Pp of .5 is desired then a larger value of A(6.9 dB) is required for m=2

than for m=1 (5.6 dB). At first glance,. it might seem that there is a

disadvantage in increasing m {more data is bad)! However, as will be
discussed in Chapter 4, other things being equal, the increased m
automatically insures a A sufficiently larger to produce an improved
PD‘
Figure 3-2 illustrates how for fixed m(=3), the probability
of detection increases with greater n, the number of vector samples

observed. This trait is entirely expected since both degrees of

freedom and the amount of information (data) are proportional to n.

The most informative aspect of the figure is the demonstration that

as n increases, the curves converge to a "1imit curve". This happens

because

= AR T T s

PD(}\;nam9zo) > Q(lezm!)‘)a X2 = 2“\20 (3-9)

as n » »: that is, the noncentral F distribution aporoaches the

noncentral chi-squared distribution [ 6]. Therefore, we may write
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=2/2
Q(zg|2m,=,0) = e Z:, */2) Q,2 (2mzy|2m2k)  (3-10)

-]

A/Z " (nz)
Z Z | - (3-11)
r=0

k=0

mzo-A/Z

"
m
]

3.2 Asymptotic Distribution of Random Sianal Test Statistic

In Appendix B it is shown that the moments of the statistic given
by (2-37) for testing the hypothesis H6 (that the data is uncorrelated

between sensors) can be written
m-1
vl _ r(n)r{n-v-k) . -
e} - T flfigey (212

Therefore the characteristic function for the new variable

y = 28n 2n z, O0s<B<l . (3-13)
is given by
6 (t) = E{ejty} - E{Zthsn}
y
m-1
= I‘(n)I‘[‘Bfn(l-th)-k + n(l'B)L . (3_14)

k=1 r(n-k)r[gn{1-2jt) + n(1-g)]

We may use the asymptotic expansion [2, p. 204]

enr(x + h)~%9,n 2n + (x+h-%) LNX - X

1
F((ﬁ% Byq(h) + 0(x7) (3-15)
=]

which x » = and h is bounded and the Br(') are Bernoulli polynomials

L-

r
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[6, ch. 23]. Applying this expansion to (3-14) yields the expression

0, (1) ~ (1-2i)7%/2 exp’ o [(1-25t)7 - 1]‘ (3-162)
m-1
where a = 22 k = m(m-1) (3-16b)
k=1
and m-1
r
op = 38y ™Y e In(1-0)] - Br,,l[n(l-s)-k];. (3-16¢)
k=1

-v/2

Since (1-2it) is the characteristic function of a chi-squared variable

with v degrees of freedom, and “r“'l?’ the cumulative distribution function
n

of y may be calculated using the asymptotic series

Asymptotic Order

Pr{y < u} =P, 1
-1
1 2, 2 1 2 -2
Huyt 5 0P, 1g-0Paup (0p 50D, n
13 12
Hughugugt §u1)Poygmuylugt 707)Paug 3
(woe Lu2)p 1 3 n
= wluy- 71)Py o (wg-wgust Fuy )Py
+ ... (3-17a)
A 2
where P = P {x < u}. (3-17b)
v r Y}

This expression can be simplified considerably by choosing a value
for the arbitrary coefficient g in (3-13) so as to make m1=0. This value

turns out to be

g = N=(mt1)/3 (3-18)

n




With this value the asymptotic series becomes

Pr{ys(§»= Py * wplPayg = Py) + us(Pyg - P,)
+|w, (P -P)+ 1 wZ(P - 2P +P)
4\ a+8 a 2 Y2\ a+8 at+d a
+[“’S(Paﬂo - Pa) + “’2“’3(Pa+10 - Pa+5 - Pa+4 + Pa)]

+[”6(Pa+12 " Pa) * 0pua(Paigz = Parg = Parg - Pa)

+P.)

1 2

a+l2 ~

1 3 -7
+ 3'“2(Pa+12 - 3P gt 3Py - Pai] +0(n 7). (3-19)

To calculate the w.'s, we need the Bernoulli polynomials; these are listed

r
conveniently in Table 23.1 of [6]. After the necessary algebra, we have

o = (m-2)(m-1)m(m+1)
2 72[n-(m+1)/37%

. = (m-2) (m-1)m(m+1)(2m-1)
3 1620[n-(m+1)/37°

oy = (m-2) (m-1)m(m+1) Lmi-m-ﬂ (3-20)
2160[n-(m+1)/3]

Values of these coefficients for various numbers of sensors m and
of samples n are given in Table 3-3.
We observe from these expressions that “r=0 for m=2. This is
true because [6]
By (1) - B,,1(0) = B ,(0)[1-(-1)"]
and
BZk+1 =0, k>0. (3-21)
Therefore for m=2, g=(n-1)/n and a=2, with the results

¥ = 2(n-1)1n z, is x5. (3-22)




w2

m 10 20 50 100 200

3 .004438 9.566(-4) 1.407(-4) 3.424(-5) 8.446(-6)
4 .02400 .004959 7.134(-4) 1.724(-4) 4.237(-5)
5 .07813 .01543 .002170 5.206(-4) 1.275(-4)
10 .4123 :05124 .01185 .002854
20 1.079 .2307 .05356

3 1.138(-4) | 1.139(-5) 6.426(-7) 7.712(-8) 9.447(-9)
4 8.960(-4) | 8.415(-5) 4.592(-6) 5.453(-7) 6.646(-8)
5 .003906 3.429(-4) 1.808(-5) 2.125(-6) 2.577(-7)
10 .02132 9.339(-4) 1.039(-4) 1.227(-5)
20 .04349 .004299 4.810(-4)
3 -1.969(-6) |-9.151(-8) -1.981(-9) -1.172(-10) -7.133(-12)
4 5.760(-5) | 2.459(-6) 5.090(-8) 2.971(-9) 1.795(-10)
5 5.290(-4) | 2.064(-5) 4.082(-7) 2.349(-8) 1.410(-9)
10 .004276 6.604(-5) 3.534(-6) 2.048(-7)
20 .007255 3.316(-4) 1.788(-5)

Table 3-3 COEFFICIENTS FOR ASYMPTOTIC
EXPANSION




~

For m=3, for example, the cumulative probability distribution

function (3-19) becomes
Pr{ys u} = Pr{zz("'4/ 3)s eu}

-2
pef o + A o2 o) - {2 <)

¢ BT b, - el ol

ot ety e} & et
+ o). (3-23)

The required x2 probabilities can be found in tables such as
Table 26.8 of [6], or calculated using
\’-
k
Pr{xg\)su} =1 - E e~W2 ___L(uﬁ (3-24)

k=0
as shown by program P-4 listed in the back of the report.

3.2.1 False Alarm Probability

We now wish to use the asymptotic distribution (3-19) to calculate

the false alarm probability for the multisensor problem with random signals.

The relation needed is

1- Pr{z 3 ZO}

_ 2ng ZnB}
1 Pr{z < 2,

1- Pr{y < 2ngan 20}; (3-25)

that is, the threshold zy is found by converting the value of u=u, for which

Pr{ysuo} = 1-PFA by the operation

zq = expg-—lio—-i . (3-26)

2ng

b




For large numbers of samples it is evident from (3-16b) (3-18), and (3-20)

that to an excellent approximation,

Zg = exp (Xi-PFA m(m-1)/(n - 750 . (3-27)

Also, since z(x) = |I +R|'1- exp{%-trRz} as shown in Section 2.2.1, we may

interpret (3-27) as a statement about the average values of the measured

intersensor correlations. That is z> z4 is equivalent to-% trR2 > anzy, or

m(m-1) | |2

2 m+1
2 Plaverage ~ (XI-PFA’ m(m-l))/(n" 5 (3-28)

Both z, and this |p]| defined by (3-28) are given for n=100, 200

0 average
and several values of m in Table 3-4. For example, for m=5 sensors and
n=100, the ratio of the determinants of the estimated covariance matrix
under H6 and H1 respectively has a 1% chance of exceeding the value 1.4672
when H) is true; this value would be exceeded by an average inter-sensor

0
correlation coefficient of about 0.2 if H1 were true.




o . le-p . n = 100 n = 200
m{m(m-1) FA, 2o lo |ave\r'age %0 lo Iaverage Jﬂ
2| 2 4.60517 1.0476 .2157 1.0234 .1521 4
3 6 10.6446 1.1139 .1896 1.0550 .1336
| J 4| 12 18.5494 1.2076 1773 1.0980 .1249
; 5 20 28.4120 1.3363 .1703 1.1543 .1198
10| 90 107.565 3.0544 .1575 1.7296 .1103
20| 380 | 415.728 87.3735 .1534 8.6195 .1065
2| 2 9.21034 1.0975 .3050 1.0474 .2151
3] 6 16.8119 1.1858 .2383 1.0883 .1680 P
af 12 26.2170 1.3055 .2108 1.1413 .1484 (
Pea = 0Lt 50 20 37.5662 ~ 1.4672 .1958 1.2089 .1377
10| 90 124.116 3.6270 .1692 1.8817 .1185
201 380 | 447.1 1224285 1591 10.1409 .1104
2| 2 | 13.816 1.1498 .3736 1.0719 .2635
3l 6 22.458 1.2556 .2754 1.1197 .1941
4l 12 32.909 1.3975 .2362 1.1805 .1663
001 51 50 45.315 1.5877 .2150 1.2572 .1513
; 10| 90 137.208 4.1550 1779 2.0114 .1246
20| 380 | 470.9 158.1337 .1632 11.4719 .1133
)
TABLE 3-4. THRESHOLDS FOR RANDOM SIGNAL DETECTION.
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3.3 Calculation of Multivariate Test Statistic

1y The statistics z(X) derived in Chapter two were derived, for
analytical purposes, from forms originally expressed as ratios of the
determinants of sample covariance matrices. Computationally it is simpler

2 to calculate these determinants than to perform the matrix inversion called

for by the analytical form. In this section, the particular method used

for computing determinants is documented, and it is shown how to convert

S

thresholds for the F-statistic to those for the ratio of determinants.

3.3.1 Computing the Determinants of the Sample Covariance Matrices '

] A well known iterative method for computing the determinant of a

symmetric matrix is the "forward Doolittle, left side" scheme [15]. That

basic approach is adapted here for the complex, Hermitian sample covariance

3 matrices of the data. It is to successively reduce the dimension of the

determinant by subtracting a multiple of the first row from the other rows |
p so as to make the first column all zeros except for the "top" or "pivot" !
element. For example, for a 3 x 3 determinant, the algorithm works as i

?ﬁ : follows: |

= 1181171

(3-28)




An mxm determinant is found by an algorithm which may be written
as follows:

Let D = |A|

Initially, D = D0 =1

For i =1 tom -1
R €15 s
35

D. =D,

i i-1 (A[OJEA)

= a..[i-1] R,
Pi T % ™

For k=1 +1 tom
For £ =i+ 1 tom

R e A

next &

L~ next k
L—-next i

. - . [m-1]
Finally, D Dm-l A

3.3.2 Computer Implementation

The application of this algorithm to the complex-valued sample
covariance matrices involved in the detection problems under c¢onsideration
was tested by means of the simple simulation Tisted as program P-5.

In this program, a Gaussian random number generator (ostensibly producing
independent, zero-mean, unit variance numbers) was used to develop fivé-

dimensional complex data vectors, Xy -

The mean vector and H0 sample covariance matrix were "built" or

accumulated iteratively by the relations (n = number of samples = 10)

ai[k] - ai[k'11+ Xg /0 » 1 = 1,2,...n(=5) (3-29)

2 L e e e et Ry~ SR R




- [kY
2 . [k]
(2, )5, % 9,50
. i =1,2,...m. (3-30)
_ k -
=054t Xk X/ 2N

A diagram of the simulation is shown in Figure 3-3. The estimated
covariance matrix under the H1 hypothesis is formed by subtracting one
half the outer product of the mean vector from the H0 hypothesis covariance
matrix. Then the determinants of these matrices are computed bylthe
algorithm given above, and the test statistic is taken to be (the real part

of) their ratio.

Figure 3-4 shdws the results of the ca]culations: The ratio for
ten samples equals 1.813 for this particular set of random vectors. In
the next section it is shown how to calculate threshold against which

this number is to be tested.

3.3.3 Obtaining False Alarm Threshold for Ratio of Determinants

The statistic z(X) for which the false alarm detection probabilities

were computed in Section 3.1 related to the ratio of covariance determinants

by
|12, )
—0 -px)=1+mpxity
1241 1
=1+ z(X)
- m_ -
=1+ n-m F2m,2(n-m)‘ (3-31)

.
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Therefore R > R0 implies

(3-32a)

n-m _
F>=0 (Ry-1) = For

or
R>1+-5-F =R

e Fo (3-32b)

0

Now from Table 3-1 we find for n=10 and m=5 that the following values may

be determined:

EEA Fo(from table) EQ

.1 2.32 2.16
.01 4.85 3.43
.001 8.75 5.38

Thus the test value, being less than R0 in each case results in the (correct)

acceptance of HO at the 10%, 1%, and 0.1% levels.
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4.0 APPLICATION OF THEORETICAL RESULTS

Having learned how to calculate the probability of detection
PD for the multivariate detection approach we are now in a position
to apply these results to the detection problem. In this chapter,
the objective is to find reasonable values for parameters which describe
the detector performance and to shoﬁ_how the multivariate detector may

be implemented.

4.1 Detection Performance Parameter, Deterministic Signals

It is convenient to extract a single parameter from the tables
and curves of Chapter 3, one which represents the performance of
detection (1ikelihood test) in achieving a useful Py while rejecting
false alarms. In receiver operating characteristics (ROC) for single
sensor detectors, the noncentrality parameter A which we have employed
becomes signal-~to-noise ratio (SNR). It is common to describe the
detector's performance by specifying the SNR for which given PD and PFA

are obtained. For example, we might choose the pair
= -2 -
(Pps Pea) = (.9, 107%) (4-1)

and define the "minimum detectable signal" (MDS) as

MDS = SNR such that P (SNR) = .9 for Pr, = 1072, (4-2)

and abbreviate this statement by the notation

MDS(.9) = SNR(.9,.01)(or SNR(.9) with PFAu=.01 understood)
(4-3)

Since the multivariate parameter A is analogous to SNR, we shall
extract values of 1 for which PD = .5 and .9 from the ROC data already
computed, then, in the subsequent sections, interpret this parameter

in terms of minimum detectable signal by employing certain assumptions

about signals and noise at the sensors.
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As an example, from Figure 3-1 we see that for PFA = .1, n= 50, and

m=2,axof 6.9 dB is required to produce PD = .5and a A of 11.3 dB
to give PD = ,9. This we write shorthand as
x(.5)
A(.9)

6.8 dB P, =1
for FA (4-4)
11.3 dB n=50, m=2.

Table 4-1 gives A(.5) and A(.9) values extracted from the
data generated in Chapter 3. The same information is plotted in
Figures 4-1, 4-2, and 4-3. From these curves we see that A(.5) and
2(.9) decrease to an asymptotic value with increasing n, and increase
with m (the number of sensors) for a given n. This is in keeping
with the discussion made of Figures 3-1 and 3-2 in the last chapter.

4.1.1 Structure of the Multivarijate Detection Parameter

From Chapter 2 (or Appendix A) we recall that the multivariate
noncentrality parameter is
) A= Lty (4-5)
~ where u is the mean of the complex data vectors {x} and I is the
covariance matrix of their independent real and imaginary parts. What
signal and noise models correspond to these quantities?
In Chapter 1, the complex data matrix elements were identified

with the in-phase and quadrature components of the received sensor wave-

forms with respect to a center frequency:

Xik = Ykt IVike (4-6a)




"l | m 10 2 50 100 200
1 6.1 5.8 5.6 5.6 5.6

2 7.7 7.1 6.9 6.8 6.8

3 8.9 8.1 7.7 7.6 7.5

B 4 10.0 8.8 8.3 8.1 8.0
5 11.1 9.5 8.8 8.5 8.4

10 X 11.9 10.4 10.0 9.8

20 X X 12.5 11.7 11.3

1 10.3 9.7 9.3 9.2 9.2

2 1.9 10.9 10.4 10.2 10.2

3 13.1 11.8 11.1 10.9 10.8

.01 4 14.4 12.5 11.6 11.4 11.3
5 15.6 13.1 12.1 11.8 11.7

10 X 15.8 13.6 13.1 12.9

20 X X 15.8 14.7 14.3

1 12.8 11.9 11.4 11.3 11.2

2 14.4 13.0 12.3 12.1 12.0

3 15.7 13.9 12.9 12.7 12.6
001y, 17.1 14.5 13.4 13.1 13.0
5 18.6 15.1 13.9 13.5 13.3

10 X 18.1 15.4 14.7 14.5

20 X X 17.5 16.2 15.8

Table 4-1(a) A(.5), REQUIRED VALUES OF DETECTION PARAMETER (dB)

for PD = .5

e e Y Ry T R S
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Pea | m 10 20 50 100 200
1 10.8 | 10.5 10.3 10.3 10.3
) 2 12.1 11.6 11.3 11.2 11.1
3 13.2 12.3 11.9 11.8 11.7
1 4 14.2 12.9 12.4 12.2 12.1
5 15.3 13.5 12.8 12.6 12.5
10 X 15.9 14.2 13.8 13.7
20 X X 16.2 15.3 14.9
1 13.6 12.9 12.6 12.5 12.4
2 15.0 14.0 13.5 13.3 13.2
3 16.2 14.8 14.0 13.8 13.7
01 | 4 17.4 15.3 14.5 14.3 14.1
5 18.7 15.9 14.9 14.6 14.5
- 10 X 18.6 16.2 15.7 15.5
f 20 X X 18.3 17.2 16.7
1 i 1 15.6 14.6 14.1 13.9 13.8
2 2 17.1 15.6 14.9 14.6 14.5
3 18.4 16.3 15.4 15.1 15.0
Sl 19.8 16.9 15.8 15.5 15.3
1, 5 21.4 17.5 16.2 15.8 15.6
10 X 20.4 17.6 16.9 16.6
20 X X 19.6 18.3 17.8
’
Table 4-1(b) A(.9), REQUIRED VALUES OF DETECTION PARAMETER (dB)
» for P, = .

D
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or xi(tk) = Uy cosw .t - Vik sinwctk
v,
Pk, (4-6b)

= uik + Vik cos[mctk + tan ”

1

If we are considering only the possibility that a deterministic
signal is present in the background noise, then the covariance matrix
z =||°ir|l is the covariance matrix of the zero-mean noise at the
sensors:

o5 = Elnyn ). (4-7)

The mean vector y = a + jb components then are due entirely to the
signal, when present, and we assume that the signal components (in-
phase and quadrature amplitudes or, alternatively, envelope and phase)
are constant (or nearly so) while the n samples are observed. Let

the signals at the sensor outputs have envelope values {Si} and phases
{ei}; then the elements of the mean vector can be identified as

iy = a; + jb, = S, cose, + S, sine,. (4-8) .

Now, using o'’ to denote eiements of the inverse of I, we can

express the multivariate noncentrality parameter by

m m .
sl ysn DD (e - dby) o' (a, + b))
i=1l r=1

nz aw[(aiar +bb ) + jasb. - ab.)]

j,r

>
n
3

ir . .
n E o Sisr[°°s(°i' er)- 3 S’"(ei'er)]' (4-9)

i,r

Since ¢ is a symmetric matrix, so also is z'l, and the summation over

the imaginary part is zero, leaving




’
! m m
: [y ir
- Ay ° 0 E E oSS, cos(ei-~er) (4-10)
£ 4 i=l r=1
The subscript "M" stands for "multivariate".
For the special case in which the noise is independent from
. .
l sensor to sensor* (the covariance matrix is diagonal), (4-10) reduces
| .
p .‘ to m 3
- A, =n 011 S2
. | i
¢ i=1
-
i =~ s?
. = 2n E 7= = 2mn x (average SNR). (4-11)
1 -20i
.=

With this result as motivation, we choose to define minimum
detectable signal for the multivariate detector by

1 =1 .
A(Pp) = 7nm J\(PD,m,n). (4-12)

MDSL(Pp) = 7rm

11
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4.1.2 Performance Predictions

Using the definitions for minimum detectable signal that have
been given, we may predict the performance of detection based on the
test statistics. For the multivariate detector, we use the numbers in
Table 4-1 to calculate

MDSM(PD)(dB) = A(PD; m, n)(dB) - 10-10910(2nm). (4-13)

Similarly, for the detector based on a single-sensor detector output
the MDS is
MD&éPD)(dB) = A(Pps 1, n)(dB) - 10 log,,(2n).  (4-14)

For example, for a false alarm probability of .001 and a detection

probability of .5, for m=10 sensors and n=50 samples, we have

MDS,(.5) = 15.4 dB - 10 log,(1000) = -14.6 dB8  (4-15)

and for m=1,
MDSl(.S)

11.4 d8 - 10 10910(100) = ~8.6 dB. (4-16)

Thus in this example, the multivariate detector has a processing gain

of 6 dB over a single-sensor.

We may define a "multivariate processing gain" by

A -
From (4-12) we may then write
A(Py; 1, n)
D (4-18)

MPG zmm .
Using the numbers for AI(PD) and AM(PD) given in Table 4-1 the MPG is

calculated and plotted in Figures 4-4, 4-5, and 4-6 for the various

PFA values.
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It is evident from these figures that detection based upon the

multivariate approach realizes appreciable gains over using a single
sensor. Gains from 2 to 9 d B are shown. The curves rise to an
asymptotic or limiting value as n, the number of observations, increases
and this value is directly proportional to m, the number of sensors.

On each figure we see that the MPG is higher for PD==.9 than for

PD= ;5, with the amount of the increase a function of PFA: the more

- stringent (smaller) the PFA required, the smaller the increase. By

comparing the figures we notice that MPG values tend to increase as

PFA decreases. This behavior is very interesting because it implies

that the multvariate detector achieves gain in two dimensions (PD, PFA);
the more difficult the detection criterion (either PD or PFA)’ the
better the multivariate approach is compared to single-sensor processing.
That is, this gain can be obtained for independent sensor noise terms.

If the off-diagonal components of the inverse covariance matrix 2'1 are
nonzero, actually the i, is more or less than 2mn - SNR (see (4-10)), and
the performance of the multivariate approach can be slightly better or
worse than has been shown, depending on the amount of correlation between
sensor waveforms, and the signal phases (see Appendix C).

Comparison with Majority Decision Scheme. Analysis of the "majority

decision" method described in Section 2.1.3 results in the following

graphical comparison:

" N

Ao st o e
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- 2 3 4 5 _ 10 20

m, number of sensors

Figure 4-7 GAIN OF MULTIVARIATE DETECTOR OVER MAJORITY SCHEME

These results show the combination of single-sensor detector

decisions (which assumes independent sensors) doing better than the
multivariate for small numbers of samples n or for large number of
sensors m. However, the comparison is not ideal since the multivariate

processor is "working harder" than necessary: even though the sensor

noises are independent (in this comparison), it is using up degrees of

freedom (see Section 3.1.2) estimating correlations. It seems reasonable

to expect that (a) a multivariate processor derived for the special case
of independent sensors will uniformly do better that the combination
scheme, and (b) when inter-sensor correlations are introduced, the
performance of the majority decison scheme will deteriorate, while the
-multivariate will not. However, the distributions in either of these

cases have not been found, so these expectations remain conjectures.

4.2 Computer Program for Performing Multivariate Detection of
Deterministic Signals

In order to assess the implementatioﬁ costs that may be associated
with the multivariate detection processing, a computer program in FORTRAN
was written and exercised. Limited simulations using the programs providedb
verification of theoretical detection perfonnance’predictions. ]
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4.2.1 Program Requirements and Desirable Features
The basic requirement the program must satisfy has already been

indicated in Section 3.3; the program must accept n vectorsi{gk} which

Dt 1’ % 2T i somabhnt

are m:x 1, accumulate mean vector and sample covariances, calculate determinants,
and form test statistics which are ratios of determinants. The basic

operation is specified by the equation

2(2(_1 95.29- --l(ﬂ) (4"19)

]
Ay X

Although the detection problem has been formulatéd i¢ this study as a "batch”
decision rather than a sequential or an iterative one, certain inherent

relationships in the functions to be computed allow accumulation of intermediate

results. Therefore, only a minimum of input data has to be stored.. Specifically,

the sample mean vector can be accumulated using

n n-1
~_1 =1 1
En % 02 Th 2 : X
k=1 k=1
= l‘i. fn-.-].] + _)En/n (4_20)

where

AR SN A X 41/ 03 0.

Similiarly, the HO covariance can be accumulated using
n

ZDEO = AO = E l(kl(k*
k= i

n-1 ‘
= —x_n_x_n* + l(.klk* = Ao[n-l].'. X X % (4_21) 4
k:;
64




where

[i+1] _ p [1] . a 0] .
Ao Ro™ 7 ¥ XiuXin®s Bg 7 = 0.

Certain economies are also possible due to the fact that the covariance
matrices are positive definite and Hemmitian.

In practical detectioé systems it is desirable to have some control
over "“integration time" or, in this context, the number of samples. For
weak, stationary signals one should like to make the number of samples high;
for strong, intermittent signals a relatively short observation time would
be selectable. Implementation of this second desirable feature is a simple
matter of storing a table of thresho]ds;

How to accommodate the variable integration time feature is suggested
by Figure 4-8. A 100-sample data base, for example, can be processed as
a whole (maximum integration time) or as ten 10-sample data bases in succession
(minimum integration time). In fact, both (plus in-between cases) can be
done in pafa]le], and the results of each displayed simultaneously in some
fashion.

Assuming simultaneous 10/20/50/100-sample detections, the basic
requirements for the multivariate detector computer implementation may be
summarized as in Figure -4-9.

4.2.2 Program Structure and Size

The basic requirements for computer implementation of the multivariate
detector summarized in Figure 4-9Y are met by the FORTRAN program listed as

program P-6 in the back of this report. A flow diagram is presented in Figure

4-10. The symbology used is as follows:
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STORAGE: (not including that required for arithmetic, subroutines, overhead)

DATA: one m x 1 input buffer for (complex) data vector

]

MEAN VECTORS: four m x 1 (complex) arrays

1 1 | I

COVARIANCES: eight m x m (complex) arrays

ARITHMETIC: complex conjugation, complex and scalar arithmetic

SUBROUTINES:

Complex Complex Complex

Vector
Vector Vector Outer

Zeroing Addition Product

Complex Complex Complex
Matrix Matrix Matrix
Zeroing Addition Determinant

TABLES: False alarm thresholds vs. PFA vs. number of samples

FIGURE 4-9. SUMMARY OF BASIC REQUIREMENTS FOR MULTIVARIATE DETECTOR
COMPUTER IMPLEMENTATION.
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START

)
L(s_enerne 10 data vectors, CX]«——— A

1 ke 10,20,30,...,100

Form mean vector, CVX
Form covariance ‘o' CAX

]
Accumulate 20's, 50's, 100's data

20's mean C¥XX = CVXX + CVX/2

20's covariance CAXX = CAXX + CAX
50's mean CVL = CVL + CVX/5

| 50's covariance CAL = CAL + CAX

i 100's mean CVC = CVC + CVX/30

100's covariance CAC = CAC + CAX

’ 10's detect
€8X = CAX - JO°CVX-CVX*

RATX = du(o\x)/de:(cax) |— Print RATX = 2
CVX = 0 = CAX = based on 10 samples

10's detect data

20's detect
CBXX = CAXX - 20-CVXX-CVXX*
RATXX = det{CAXX)/det{CBXX) Print RATXX = 2
CVXX = 0 = CAXX = CBXX based on 20 samples 3
R| :
NO: generate next 10 vectors (A)
YES
3
hl
50's detect
CBL = CAL - 50-CVL-CVL*
RATL = det(CAL)/det(CBL) ——> Print RATL = 2 4
CVL = 0 = CAL = CBL based on 50 samples g
@ NO:generate next 10 vectors (A) 3
YES

100's detect

CBC = CAC - 100°CVC-CVC* L5 print RATC = 2
= C
MESC d;ticzgé/get( 8e) based on 100 samples

v

sST0P

3 FIGURE 4-10 FLOW OF MULTIVARIATE DETECTOR PROGRAM.
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Program Varijable Name

~-Mathematical Equivalent

B I s e

M(=5) m, number of sensors
| . NSAMP n, number of samples
i CX(M) (complex) Xy data vector
Cvx(M) (complex) y, sample mean (10's base)
CVXX(M)  (complex) i, sample mean (50's base)
CVL(M)  (complex) u, sample mean (20's base)
CVC(M)  (complex) u, sample mean (100's base)
CAX(M,M)  (complex) 2n£0, Ho covariance (10's base)
CAXX(M,M)  (complex) 2n§0, Hy covariance (20's base)
CAL(M,M)  (complex) ano, Hy covariance (50's base)
CAC(M,M)  (complex) 2n§0, Hy covariance (100's base)
CBX(M,M)  (complex) 2n§1, H1 covariance (10's base)
CBXX(M,M) (complex) 2n§1, H1 covariance (20's base) ‘
CBL(M,M)  (complex) 2n§1, H, covariance (50's base) |
CBC(M,M)  (complex) anl, H1 covariance (100's base)
RATX, RATXX, RATL, RATC z, computéd test statistics
THRX, THRXX, THRL, THRC z» Stored thresholds |

A1l vector and matrix operations (except for construction of CVX and CAX)

are performed using subroutines. The main programs and subroutines, compiled

as listed on an IBM 3033 FORTRAN system were sized for m=5 as follows:




-a

_just used are reset.

Program or Subprogram Source Lines Size
MAIN (incl. data generation) 85 4442
CLRV (zero vector) 7 380
CLRM (zero matrix) 8 472
ADDV (add vectors) 7 588
ADDM (add matrices) 9 734
PRODV (vector product) 8 718
DETER (determinant) 15 910
8244

complex arithmetic, random no. generator 500

8744

1/0, FORTRAN, other system overhead 21208

29952

The "size" is understood to be in units of 8-bit bytes, so that the
program itself requires about 8k on an 8-bit machine, or 4k on a 16-bit
machine.

As shown in the flow diagram, the program operation is straightforward:
10-sample mean vectors CVX and H0 covariance matrices CAX are constructed
from the input data (one input vector at a time). After incrementing the
other (20-, 50-, and 100-sample) mean and covariance accumulations, the Hy
covariance CBX is formed, its determinant computed, and the test statistic z is
computed as the ratio RATX.

In lieu of decision-making the program prints out z and the threshold
z, corresponding to a one percent false alarm probability.

FORTRAN conditional (IF) statements are used to "count" the number of
10-sample blocks of data which have been "observed,” and appropriately

enable the 20-, 50-, and 100-sample detection computations at the proper

"time". After each detection operation the accumulated means and covariances
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! 4.2.3 Comparison of Computed Multivariate Results with Theory

To exercise the multivariate detection computer program and to
collect simulated results for verification of the theory, a data base of 100
vectors with the following characteristics was generated and processed.

; : m=5, =1, u ='Sl+ JQ_-

The signal components were chosen to be equal in phase (0%) and amplitude
at each sensor. On separate runs the amplitude was made 0, .2, .3, .5, and

.9 to correspond to SNR's of -=, -17, -13.5, -9, and -3.9 dB respectively.

The results of these simulations and their theoretical interpretation
may be displayed as shown in Figure 4-11. Detections for a particular
block of data are indicated by shading the portion of a diagram (similar to
Figure 4-9) which corresponds to that biock in simulated time. Just to the i
right of these diagrams, a tally of detections is provided (1/5 = one j

detection in five trials, etc). The other experimental values presented are

the arithmetical average values of the test statistics compute, normalized
by the 1% false alarm threshold.

Thus, for example, on the run for which a SNR of -13.5 dB was

simulated, the 20's detection yielded a detection at the third data block only,

and the average value of the five statistics computed'was 83.95% of the false

alarm threshold.

Along with the experimental data in Figure 4-11 theoretical predictions

are given for probability of detection and mean value of the test statistic

relative to the threshold. The PD values were determined by setting A= 2nm SNR

and using Table 3-2. The mean value of the test statistic was computed using ;

[14]

~ vz(vl'*l)
E F"l"’zh) = m (4-22)




EXPERIMENTAL RESULTS

input scores and sample sets
SNR
100
0 50 50
(s=0) 20 {20 | 20 | 20 | 20
10{1010{10{10{10{ 1010]10]10
-17 dB ,gé
(s=.2)
Z
-13.5 dB ,/{222?24
(s=.3) H
-9 dB 7 7
(5=.5) T4
-3.9 d8 /42
/ Y,
(5=.9) %%
4%
97977

tally
0/1
0/2
0/5
0/10

0/1
1/2
0/5
0/10

/1
1/2
1/5
0/10

1/1
2/2
3/5
1/10

1/1
2/2
5/5
5/10

avg

.9301
.8873
.6768
.3785

.9851
.9394

.7433
.4134

1.0902
1.0406
.8395
.4604

1.4653
1.3932
1.1582

.6135

2.8478

2.6996
2.2995

1.1048

.01
.01
.01
.01

.69
.25

.05
.02

.99
.73

.18
.04

.99+
.99
.65

.12

.99+
.99+
.99+
.55

THEORY

E{z}

e

-

z0
9344
8697
6810

3847

.0288

.9584
.7526
.4275

. 1468
.0694

.8422
.4809

.5243
.4243
.1290

.6519

= N NN

.8458

.6667
.1325

.2503

FIGURE 4-11. EXPERIMENTAL RESULTS VS. THEORY FOR MULTIVARIATE DETECTOR,
PFA = .01 and 5 sensors.
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to write

m 2(n-m)(2m + 2nm SNR)
Efz} =1+ n-m 2m{2n - 2m - 2)

! =1+ (1+nSNR). (4-23) |

The zo's were obtained from Table 3-1 as described in Section 3.3.3,

resulting in

Z4 (m=5, PFA =1%) | 5.8486 | 1.9930 | 1.2805 | 1.1271 -

TS

The experimental values are very close to theoretical predictions. 3
For example, for SNR = -9 dB, the 50- and 100-sample detection calculations
yielded "perfect scores"; theory predicted that detection was better than d

99% probable. The 20-sample detection calculations scored 3/5 or 60%

compared to the theoretical 65% probability, and the 10% score~of the
10-sample detector was consistent with a predicted PD of 12%.

Another way of viewing the results is given in Figure 4-12,
in which the theoretical and experimental average detection statistics

are compared as functions of SNR. The agreement is very good for this

parameter also, considering the relatively small sample sizes.
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! [
|
|
3.
? M= 5 sensors; ¢ = [
100-sample vector data set
solid lines: theoretical ' i
dots: simulated ?
, 2y = 1% F.A. threshold '
;]
_-5 z = multivariate detection ¢
; statistic
2. uniform, constant signal
amplitude and phase (00}
across sensors
Zavg ' L
Z0 n=20 ;
(5-pt avg) 5
Detection
n=50(2-pt avg) declared
t 4
1 | e— | |
n=10 It
(10-pt avg)
¥ 0
0 .5 1.0
S, signal amplitude
’ | I [rrr 7 17 1T T T | ! )
- -20 -15 -10 -5 -3
SNR in dB
; ’

Figure 4-12 AVERAGE (NORMALIZED) DETECTION STATISTIC vs. SNR,
Pea = .01
FA = -




4.3 Modification to Computer Program for Detecting Random Signals

The computer program for detecting deterministic signals may be
easily modified in order to calculate test statistics for random signals.

A1l that is required is the following subroutine:

SUBROUTINE RHODET (CMAT, M, Cl)
IMPLICIT COMPLEX (C)

€2 = (1., 0.)
D01 I =1, M

1 C2 = C2*CMAT(I,I)
R1 = REAL (C2/C1)

WRITE (6,2) R1
2 FORMAT (1X, 'CORRELATION DET RATIO =', F9.4)
RETURN
END
In response to the statement, for example CALL RHODET (CAX, M, CNX)
the subroutine calculates the ratio of the product of the diagonal elements
of the covariance matrix CAX to its previously computed determinant, CNX,

and prints it out.




5.0 ASSESSMENTS AND RECOMMENDATIONS

The study is concluded in this present phase by reviewing what
has been done, assessing the results, and recommending further work.
5.1 Review

5.1.1 Summary of Work Performed

The mathematics of complex multivariate Gaussian statistics have
been applied to a model of a multisensor detection problem. Te$ting
hypotheses concerning the presence or absence of sources in the sensor
medium have been shown to be equivalent to computing statistics or -
functions under the Gaussian noise model, corresponding to ratios of
determinants of sample covariance matrices.

For the case of deterministic signals whose magnitude and phase
remain constant during the period in which data are collected, the
multivariate test statistic has been shown to be in the family of F-
statistics. Using the properties of F-statistics distributions,
theoretical predictions have been made of SNR's required to detect the
signal while rejecting false alarms at a given level. The results confirm
the expectation that multivariate processing of sensor data requires a
significantly smaller SNR than does single-sensor processing. Also, a
non-ideal comparison indicates that multivariate processing is better than
a majority decision method for combining individual sensor decisions when
large numbers of samplies are used.

A computer program implementing the multivariate detection processing
has been developed and tested, yielding simulation results compatible with
theory.

For the case of random signals, the multivariate test statistic has
been shown to have a distribution which approaches the chi-squared family
asymptotically. Computation of the random signal test statistic may be

accomplished by a very slight modification to the program for the detection

of deterministic signals.
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5.1.2 Summary of Multivariate Detection Performance
For deterministic (narrowband or broadband) signals the performance
of the multivariate detector may be summarized as follows:
i
} Minimum Detectable Signal in dB (PD = .9, PFA = .01,
I = diagonal)-
number of samples
10 20 50 100 200
1 0.6 -3.1 -7.4 -10.5 -13.6
number 2| -1.0 -5.0 -9.5 -12.7 -15.8
of
sensors 3| -1.6 -6.0 -10.8 -14.0 -17.1
4| -1.6 -6.7 | -11.5 | -14.7 -17.9
51 -1.3 -7.1 -12.1 -15.4 -18.5
10 X -7.4 -13.8 -17.2 -20.5
20 X X -14.7 -18.8 -22.3
Multivarjate Processing Gain in dB over
Single-Sensor Processing (PD='.9, PFA= .01, £ =diagonal)
n
10 20 50 100 200
2 1.6 1.9 2.1 2.2 2.2
3 2.2 2.9 3.4 3.5 3.5
m 4 2.2 3.6 4.1 4.2 4.3
? .
5 1.9 4.0 4.7 4.9 4.9
10 X 4.3 6.4 6.7 6.9
20 X X 7.3 8.3 _8.7

e
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' 5.2 Assessments E'
The multivariate detection approach is now assessed with regard iA
y to detection performance, implementation, and compatibility issues. j {
1 , 5.2.1 Detection Performance % 2
| Clearly the multivariate detection approach, achieving a SNR
processing gain of around 2nm, is capable of performing very sensitive }
detections. It is the ML solution for the unknown signal case. ‘
It is instructive to note that a beamformer utilizing m sensors
and n samples, and processing the sum of m unknown signals in unknown ]
noise by the ML method shown for single sensors, gets better results than 3
the multivariate technique when steered at the target (equal signal
phases). The gain of the beamformer over the multivariate is, -for the
parameters used in Section 5.1.2., given below: .
Beamformer Gain over Mu]tivqriate in dB ]
] n=_10 20 50 100 200
m=2|1.4 1.2 0.9 0.8 0.8
3] 2.6 1.9 1.4 1.3 1.3
' 4| 3.8 2.4 1.9 1.8 1.7
51 5.1 3.0 2.3 2.1 2.1 3
10 X 5.7 3.6 3.3 3.1 ‘
’ 20 X X 5.7 4.7 4.3

Thus it is seen that the multivariate detector is not far behind the

beamformer in performance when their number of sampies is large. !Moreover,

’ it must be noted that the multivariate detector can operate where good

Ly
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beamforming is not possible, such as sensor placements which are not
well known or subject to random variation. This is because in effect
the multivariate processor estimates the signal phases at::each sensor.

Whether the multivariate processing gain is sufficiently great
to be worth implementing is primarily a function of the effort required
to collect the data. On the one hand, combined single-sensor processing
or some "majority vote" of single-sensor decisions seems a simple
procedure; one does not have to push m channels through the same 1/0 or
FFT device in roughly the same time frame or buy a parallel processor.
On the other hand, if the detection scenario tolerates a non-real time
solution, such as time-sharing FFT and I/0 devices, the only significant
additional burden the multivariate approach imposes is the need for
storing (buffering) the data segments from each sensor (rows in the X
matrix) until the entire data matrix is collected. In this connection
it should be noted again that the time a]ignment of sensor data is not
critical to the performance of the multivariate detection approach, since
for independent sensor noises, the sensor signal relative phases do not
affect it.

The comments above apply to the detection of deterministic signals.
Evaluation of the detection of random signals remains to be done.

5.2.2 Implementation

As demonstrated by the computer program for implementing the multi-
variate detector, the programming complexity and storage requirements are
quite modest. This assessment, however, is based upon the availability of
input data vectors (columns in the X matrix) in sequence. If the data
collection situation differs from this assumption, additional storage for
buffering will be required. Still, the advent of microprocessor-based,

parallel processing at low cost would make an m-channel data bus going into

a multivariate processor (another microprocessor) a strong possibility.
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5.2.3 Compatibility

Since some detection scenarios there is a certain amount of
competition for computing resources among the various signal processing
tasks (detection, localization, tracking, etc.), it is appropriate
to.assess the compatibility of the multivariate detection approach with
these other tasks. While it has not been shown in this work, in the
previous study [1] it was demonstrated that the statistical quantities
developed by the multivariate processor (means, variances, and covariances)
are also sufficient statistics for estimation of certain parameters.

Thus simultaneous detection and estimation can be carried out using
some of the same data processing.

For example, the diégona] elements of the sample covariance matrix
are estimates of noise power at each sensor and the off-diagonal elements
are inter-sensor correlations. The mean vector contains estimates of
the signals arriving at the sensors. Also, the single-channel test
statistic is an estimate of SNR at one sensor, while the multivariate
test statistic is a generalized SNR. Therefore, it appears that the
multivariate processor is very compatible with signal processing tasks
requiring the estimation of these quantities.

5.3 Recommendations

Further work recommended may be classified into two categories:

continuations and extensions.

5.3.1 Continuations

Recommended further work in a continuation of the present work:
(a) Theory: Find receiver operating characteristics for random
signals. Deal with DFT components explicitly for both random and

deterministic signals. Obtain ROC for special cases of the ML detector

such as independent sensor noises.
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(b) Comparisons: Compare multivariate random signal detection

performance against that of combined two-sensor correlation detectors.

(c) Algorithms: Refine the program for computing test statistics
so that detection results for the various sample sizes (10/20/50/100)
are available every ten samples by using a "sliding window" concept.

Also, seek ways to iterate the computation of determinants so that
accumulation and storage of covariance matrices is not required.

(d) validation: Test the multivariate detection approach against
simulated and actual multisensor data.

5.3.2 Extensions

Recommended further work extending the present work:

(a) Develop joint detection and estimation procedures which
utilize.the same block of multisensor data. For example, joint random
signal (correlation) detection and localization via time delay estimation
are especially compatible. Also, a generalized multivariate detector
could be used to "educate" a beamformer and thereby obtain bearing
estimates.

(b) Study in detail the impact on software and hardwaire requirements
that implementation of multivariate processing would have, for a specific

multisensor scenario such as airborne ASW surveillance using sonobuoys.
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LIST OF PROGRAMS

Incomplete Beta Function (False Alarm Probability)
F-Statistic: Probability of Detection

Asymptotic Distribution Coefficients

Chi-Square Cumulative Distribution

Tryout of Matrix and Vector Operations

Full-Scale Implementation of Multivariate Processing
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PROGRAM P-1. INCOMPLETE BETA FUNCTION (F-STATISTIC FALSE ALARM

PROBABILITY).
- :
Ix(b,a) = x(1+ Cyt oyt Lt ca-l)

where Crs] = (b + r)(1 - x)cr/(r +1), ¢y = 1. (a>1)

hp 34C keystroke codes:

LBL A CHS STO 1 RCL 6
STO 1 STO 4 RCL 4 1SG
Xy RCL O RCL 1 - GTO 2
STO O 1 STO 6 GTO 1
RTN - LBL O LBL 2
LBL B EEX x RCL 1
ST0 3 3 STO+5 INT

1 + 1 RCL 4
ST0 5 1 STO+6 R+

- + Clx )

Routine A stores values of a and b.
To compute I, enter x, run routine B.

Example: Ix(8,2) = .10000 for x = .63164.

PROGRAM P-2. PROBABILITY OF DETECTION FOR F-STATISTIC.

//7DEMFXACT JOB (0591, 0000,,,,,,Y,0), MILLER, CLASS=E
/#FETCH ,
/=NOTIFY
/ENCSETUPR
//STEP1 EXEC FORTGCLIS
//FORT.SYSIN DD =
DIMENSION AM(20), PD(20),NN(10), MM(10), XX(7,5)
READNMS, 1) (NN(I), I=1,5), (MM(1), I=1,7) )
1 FORMAT(121IS)
READ(S, 2) (AM(I), I=1,11)

2 FIORMAT(11FS. 1)
READ(S, 3) XX
I FORMAT(7F11.4)

WRITE(5, 3) XX

D 32 Na=1,2

NO=NN (NA)

WRITE(6,4) NO

4 FORMAT(/1X, “N=", IZ3/2X, "M= L=0 ~60E -3DB

coB 208 10DE 12DE 14DB 140B7)

DO 30 MC=1,3

MA=MM(MC)

ME=NO-MA

X=XX{MC, NA)

(continued on next page)
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PROGRAM P-2 (continued)

*®/
81124L8° Sv5e24 " 22076 ¢ 2CL996 " LLYELE " SE5026° Set8s6 ”

69LbL®  ©82098°  BLS0ZE"  Y9LEEE"  SEVLYET  E&LEIVET  O10LLE"
999015 ° &58ZL* SYEYS®  91L893° 10648°  EEEZETST  SEOVSE”
‘0 eeLce” Ly2ET " [v189:  gevEvsr  EZ0IST  Lomose:
"0 ‘0 L600E" 2S00 * Z4E0S" YIIES " L9TVLL®
.wﬁ l¢ﬁ Iwﬂ lOﬂ lm I-w lm“ lﬂu Im.l ﬂU.@' OIO
o2 oY S v € & 1 002 00l 0% OZ Ol
* Q0 NISAS 09//
%
. an3
d0LS

ANNTANCD cE
AT INCD o
(2411 ‘0T ‘XT)IVWMDA ) £
(vt ﬂ I14CI)dd) ‘Y (T£49)3LINM
NI INCDD =1
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( "T/YWY—=) X I THC= TS ot
L 0Log
Ol 0109 (S-3T1 1114l
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v )8 +N=N
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& 0OLI9 (O @3 " Xvr) =1
T=-T+N=XVLI"
*1==0
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O=N
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(I Y=Vl
S OLOD (Tl AX
‘ *1=13
O=TWOS
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PROGRAM P-3. ASYMPTOTIC DISTRIBUTION COEFFICIENTS.

//D2AXCOEF JOB (0591, 0000, ,,,,,Y,0), MILLER, CLASS=E
/%FETCH
" /ENOTIFY
/#NOSETUP
//STEP1 EXEC FORTGCLG
//FORT.SYSIN DD =
DIMENSION XM(&), XN(&),02(6, &), 03(6, 6),D4(6,6)
READ(S, 1) (XM(I), I=1,5), (XN(I), I=1,95)
FORMAT(10F7.2)
D 2 NM=1,5
D3 3 NN=1,5
IF(XM(NM).GE. XN(NN)) GOTO 2
X=XN(NN)—=(XM(NM)+1.) /2.
D2 (NM, NN)=(XM(NM) =2, ) #(XM(NM) —1. ) =XM(NM) % (XM(NM) +1. ) /72, / X=»n2
D3 (NM, NN) =02 (NM, NN) #(2, #XM(NM)—-1. ) /22.5/X
D14 (NM, NN) =D2 (NM, NN) % ( XM(NM) #=2-XM(NM) =7, ) /30, / X#%2
CONTINUE
CONTINUE
FORMAT (EE12. 4)
WRITE(S,4) LO2
WRITE(&,4) D3
WRITE(E, 4) D4
STOP
END
VL .3
//G0.SYSIN DD =
3.. 4, S. . S0. 100. 200.
/%
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PROGRAM P-4  CHI-SQUARE CUMULATIVE DISTRIBUTION.

2
Prix <x } =P(x]v) =1 - Q{x|v), where v is the number of degrees of freedom

and v/2-1
Axjv) = eX2 7 (x/2)Vnt
n=0
hp 34C keystroke codes:
LBL A 2 4 156
CLR ¢ + RCL 7 G701
EEX STO 7 Xy RCL 1
3 1 + RCL 7
: STO 8 RCL 8 2
ST0 1 LBL 1 x $
X<y T+ STO 8 CHS

Example: Q(447.1|380) = .0100; Q(4.60517{2) = .10000.

PROGRAM P-5  TRYOUT OF MATRIX AND VECTOR OPERATIONS.

//D2TRYOUT JOB (0591, 0000, ,,,,, Y, 0), MILLER, CLASS=E
/EFETCH
/ENOTIFY
/ENDQSETUP
//STEF1 EXEC FORTGCLG
//FORT.SYSIN DD =
IMPLICIT COMPLEX(C)
DIMENSION CX(5),CC(5, 5), CMWI(S), CCOQ(S, &)
. CALL 3TARTR(&SSZ?)
DO 1 K=1,5
CMU(K)=CMFLX (0., 0.)
DO 2 Ki1=1,5
CC(K, K1)=CMPLX(0.,0.)
CCO(K, K1)=CMPLX(0., 0.
2 CONTINUE
1 CONTINUE
C GENERATE RANDOM VECTORSZ, MEAN VECTOR, AND.XX* MATRIX
DO 8 N=1,10
Do & ‘.'=1i S
=RANDN(1.)
B=RANLIN(1.)
CX(J)=CMPLX(A, E)
CMUC ) =CMI( D +CX (L) /710,
Do 4 Ji=1,d
CC(J, J1)=CX(J)BRCONJIG(CX (J1) ) /20.+CC(d, J1)
CC(J1, N=CONJIG(CC(J, J1))
CONTINLE
CONTINUE
CONTINLUE

DWd

(Continued on next page)

eX
ST0 9
X
RCL 9

X




12

7

i 0 i - pi L "o L R MR AL Yol e < i ot BRI S i &0 5 2 i 0 vt

PROGRAM P-5 (continued)

WRITE(6, 12)

FORMAT(1X,’ MEAN VECTOR ) g
WRITE(6,5) (CMUW(I), I=1,5)

FORMAT(1X, 10F9.3) . ,

WRITE(é, 6)

FORMAT(//,1X,7 PMATRIX XX= 4,/)
DO 7 1I=1,5

WRITE(6,5) (CC(I1,J),J=1,5)

CONTINUE -

C GENERATE (X—X0) (X-XQ)® MATRIX

14

13
15

16

Do 13 J=1,5

0o 14 1=, 5

CCO(J, 1)=CC(J, I)~CMU(N)=CONJIG(CMUCI)) /2.
CCO(I, J)=CONJG(CCO(J, I))

CONTINUE

CONTINUE

WRITE(6, 15)

FORMAT(//,1%X,7 TMATRIX (X—XDO) ( X=Xy >= 7,/)
DO 16 1=1,5

WRITE(6,S) (CCO(I,N),d=1,3)

CONTINLE

C COMFPUTE DETERMINANTS, RATIO

11
10

17

/%

CDET=CMPLX(1.,0.)
CDETO=CDET

Do 2 1=1,4
CPIV=CC(I, 1)
CPIVO=CCO(I, I)
CDET=CDET=CFIV
CDETO=CDETCO=CFIVO

* JMIN=I+1

Do 10 J=JMIN, S

DO 11 J1=JMIN,S

CC(J, J1)=CC(J, N)-CC(I, J1)=CC(J, I)/CPIV
Cco(d, J1)=CCO(, J1)-CCO(I, J1)=CCO(, 1) /CPIVO
CONTINUE

CONTINUE

CONTINUE

CDET=CDET=CC(S, 5)

CDETO=CDETO=CCCO(S, 5)

CRAT=CDET/CDETC

WRITE(6, 17)

FORMAT(/,1%,” DETS AND RATIO /)
WRITE(4,S) CDET, COETQO, CRAT

STOP

END

//\ . KED.SYSLIB DD

7/
/¥

DD DSN=CS%1.SUBLIB, DISF=SHR
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’ PROGRAM P-6  FULL-SCALE IMPLEMENTATION OF MULTIVARIATE PROCESSING.

/7/DZBIGONE JOB (0S21, 0000, ,,,,,Y, 0), MILLER, CLAZS=
| /¥FETCH
/7=NOTIFY
/ =NOSETUP . y
//STEP1 EXEC FORTGCLG
//FORT,.SYSIN DO =

IMPLICIT COMPLEX(L)

DIMENSION CX(S), CVX(S), CAX(S, S), CEX(S, ), CAXX(S, 5), CEXX (3, &)
1, CAL(S, 5), CEBL(S, S), CAC(S, 5), CERC(S, 5), rVXX(S) CVL(S), CVC (D)
CALL STARTR(&TST?)

M=3

) NSAMF=10
ENSAMP=FhGAT(NSAMF)
THRX=5.%

THRXX=1. ##d(
THRL=1.2305
THRC=1.1271
WXX=2.=ENSAMP
WL=S. =ENSAMP
WC=10, =ENSAMP |
CALL CLRV(CVXX, M) : :
CALL CLRV(CVL, M)
CALL CLRV(CVC, M)
CALL CLRM(CAXX,M, M) ﬂ
CALL CLRM(CEXX, M, M)

CALL CLRM(CAL, M, M)
CALL CLRM(CEL,M, M)
CALL CLRM(CAZ, M, M)
CALL CLRM(CEZ, M, M)
Do 1 1=1,5

o1 J=1,2 -
CALL CLRM(CAX, M, M)
CALL CLRM(CEX, M, M) ;
CALL CLRV(CVX, M) J

sl [

DO 2 K=1, NSAMP
Do 2 Ki=1,M
=RANDN(1.)+.3

B=RANDN(1.)

CX(K1)=CMPLX(A, E)

CVX (K1)=CVX(K1)+CX (K1) /ENSAMP

Do 2 Kz=1,K1

CAX (K1, K2)=CX (K1) =CONJG(CX(K2))+CAX (K1, K2)
3 2 CAX (K2, K1)=CON.JG(CAX (K1, KZ))
: CALL ADDM(CAXX,CAX,M,1.,1.)
CALL ADDV(CVXX,CVX, M, 1.,.5)
CALL ADDM(ZAL,CAX,M,1.,1.)
CALL ADDV(CVL,CVX, M, 1.,.2)
CALL ADDM(CAC,CAX,M,1.,1.)
CALL ADDV(CVC,CVX,M,1.,.1)

E » (continued on next page)
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PROGRAM P-6 (continued)
TENS DETECT

CALL PRODV(CVX, M, CVX, M, CEX, ENSAMF)

CALL ADDM(CEX, CAX, M, —1.,1.)

CALL DETER(CAX, M, CNX)

CALL DETER(CBX, M, C5X)

RATX=REAL (CNX/CZX)

WRITE(4, 3) RATX, THRX

FORMAT(/, 1X, “TENS:IRATICO=",F%.4, 1X, “THRESHOLD=",F7.4)

TWENTIES DETECT

IF(J.EQ.1) GOTO 4

CALL PRODV(CVXX, M, CVXX, M, CEXX, WXX)
CALL CLRV(CVXX, M)

CALL ADDM(CEXX, CAXX,M,-1.,1.)
CALL DETER(CAXX, M, CNXX)

CALL DETER(CBXX, M, ©5XX)

RATXX=REAL (CNXX/C3XX)

CALL CLRM(CAXX,M, M)

CALL CLRM(CEXX, M, M)

WRITE(6,5) RATXX, THRXX

FORMAT(/, 1X, “TWENTIES:RATICO=",F%.4, 1X, “THRESHOLD=",F7.4)

FIFTIES DETECT

IF(I=J.ER. 3. 0R. J=1.EQ.10) GOTO &
GOTD 1 '

CALL FRODV(CVL, M, CVL, M, CRL, WL)
CALL CLRV(CVL,M)

CALL ADDM(CEL,CAL,M,-1.,1.)

CALL DETER(CAL, M, CNL)

CALL DETER(CEL, M, C3L)

RATL=REAL (CNL/CZL)

cALL CLRM(CAL,M, M)

CALL CLRM(CEL,M, M)

WRITE(6, 6) RATL, THRL

FORMAT(/, 1X, "FIFTIES:RATIO=",F7. 4, 1X, “THRESHOLD=",F7.4)
CONTINUE

HUNDREDS DETECT

CALL PRODV(CVC, M, CVZ, M, CEC, WC)
CALL CLRV(CVEZ, M)

CALL ADDM(CEC,CAC, M, —-1.,1.)
CALL DETER(CAC, M, CNZ)

CALL DETER(CEC, M, CSC)
RATC=REAL (CNC/CSC)

CALL CLRM(CAC, M, M)

CALL CLRM(CEC, M, M)

WRITE(&, 7) RATC, THRC
FDRMAT(/,1x,'HUNDREDS:RATIO=’,F?.4,1X,’THRESHDLD=’,F7.4)
STOP )

END

(continued on next page)
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PROGRAM P-6 (continued)

SUERCUT INES

SUEROUTINE DETER(CMAT, M, CDET)
IMPLICIT COMPLEX(C)

DIMENSION CMAT (M, M)

IMAX=M-1

CDET=(1.,0.)

no 1 I1=1, IMAX

CPIV=CMAT(I, I)

CDET=CRET=CFIV

JMIN=I+1

DO 1 J=JMIN, M

0o ¢ J1i=JMIN, M

CMAT (J, J1)=CMAT (J, J1)-CMAT (I, 11 )=CMAT(J, 1) /CPIV
CDET=CLET=CMAT(M, M)

RETIURN

END

SUEROUTINE PRODV(CV1, N1, CVZ, N2, CMAT, W)
IMPLICIT COMPLEX (L)

DIMENSION CV1(N1), CVZ(NZ2), CMAT (N1, N2)
oo 1 I=1,N1

DD 1 J=1,N2

CMAT (I, J)=W=CV1(I)=CONJIG(CVZ(D)
RETURN

END

SUBROUTINE ADDM(CMATL, CMATZ, M, W1, W2)
IMPLICIT COMFLEX(L)

DIMENSION CMAT1(M, M), CMATZ2(M, M)

g1 I=1,M

Do 1 Jd=1,M

CMAT1(I, N)=W1=CMAT1 (I, ) +W2ECMATZ(I, )
CONTINUE

RETURN

END

SUBROUTINE CLRM(CMAT, M, N)
IMPLICIT COMFLEX(C)
DIMENSION CMAT (M, N)

po 1 I1=1,M

o 1 J=1,N

CMAT(I, J)=(0.,0.)

RETURN

END

SUBROUTINE CLRV(CV, M)
IMPLICIT COMPLEX(C)
DIMENSION CV(M)

Do 1 I1=1,M
CV(I)=(0.,0.)

RETURN

END

(continued on next page)




PROGRAM P-6 (continued)

c
SUBROUTINE ADIV(CV1, CVZ, M, W1, W2)
IMPLICIT COMPLEX(C)

DIMENSION CV1(M),CVZ(M)
0o 1 I=1,M .

1 CVI(I)=W1%CV1(1)+WZCV2(T)
RETURN
END

/%

//LKED.SYSLIE DD

/7 DD DSN=CS91.SUELIB, DISP=SHR

/%

OUTPUT FROM PROGRAM P-6 AS LISTED, SHOWING DETECTIONS (P
(5 sensors, S = .3 or SNR = -13.5 dB)

TENSIRATIO= 3. 0335 THRESHOLD= S.84%54
TENSIRATIO= 1.6348 THRESHOLD= S.8486
TWENTIES:RATIO= 1.641% THRESHOLD= 11,9930
TENSIRATIO= 3.5713 THRESHOLD= 5.8486
TENS:RATIO= 3.38445 THRESHOLD= 5.3426
TWENTIES::RATIO= 1.9891 THRESHOLD= 1.,9930
TENS:RATIO= 3.0560 THRESHOLD= S.8484

—» FIFTIESIRATIO= 1.3326 THRESHOLD= 1.2&05
TENSIRATIO= 3.03216 THRESHOLD= 55,8486

~—>» TWENTIES:RATIO= 2.1577 THRESHOLD= 1.9930
TENS:RATIO= 1.5716 THRESHOLD= S5.5486
TENSIRATIO= 3.7013 THRESHOLD= S.2486
TWENTIES:RATIO= 1.3103 THRESHOLD= 1.9930
TENS:RATIO= 1.7447 THRESHOLD= S5.8486
TENS:RATIO= 1.713%9 THRESHOLD= S.3486
TWENTIES: RATIO= 1.2670 THRESHOLD= 1.9930
FIFTIES:RATIO= 1.1324 THRESHOLD= 1,205

—?» HUNDREDS: RATIO= 1.2309 THRESHOLD= 1.1271

h..IIJld.dl-IIilih-iﬂHh-.h.i.-ﬁiHIlﬂlhlﬂ.lll.ﬂ.ﬂ.ﬁﬂlllniﬂihﬂnﬂhi“ -
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g APPENDIX A
2 DISTRIBUTION OF MULTIVARIATE TEST STATISTIC FOR
| COMPLEX DATA
, \ 2
]
FW (A) Following the approach of Anderson, we note that the sample

: mean vector and sample covariance are independent. The original data

| ' vector samples are

X, = U +jV ’ (mx1)9 (A'l)
X =4 TN

vhere samples are assumed independent and identically distributed as

multivariate normal, denoted

uy ~ N(a,z), Yy ~N(b,Z), (!k’!k independent). (A-2)
The sample covariance £ s such that
2nz = XX* - Xoxo* = A
n n
- DXt L B g DX (-3)
k=1 k=1

The data matrix can also be represented in a different coordinate system;

let B be an orthogonal, (nxn) matrix: i

X=2"', BB'-= In; BE(QJ, 92,...,9n).(rea1) (A-4)

That is, there is another set of vectors such that

n
2z = Xb = 21 bk
1:

and these vectors are also independent. Let the nth column of B have

all components equal to 1/vh . Then
~ N(/’T U Z)

A-5
~ N(Q. z)o k#n ( )

i

4
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ZB'BZ* - npyu*x=2127%-2 2z *

. A= = n “n {
| n n-1
5 PR D (h-6) |
: k= k=1

Therefore u is independent of A because z, is independent of the other

I itelie e Pl Aefad.

{z,1.
» : (B) Using these new vectors, the test statistic is
. .

1
."‘* -1;\_ * *'1 3
LR SN DD |
1 :

k=

n-1

k=1
Now the {gk} are transformed by diagonalization: v
Yy 4 ng where DID' = Im (A-8) ?
n a* A‘1 0y ned *)-1 *
\ so that n j i=tr (é;% Y 457 ¥, 4, (A-9)

where the {xk} have identity covariance matrices.

' (C) A third transformation is performed using a unitary matrix

SPTr]

(complex orthogonal) Q such that QQ* = I and resulting in the data 3

vectors
’ W = Ay (A-10)
with the constraint
W, = Q= (lyls 0, 0,...,0)", (A-11)
J ] This makes the matrix Y, xn* in (A-9) become a matrix with only one '

nonzero component, causing the trace to be
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2, (A-12)
k=1 '
The element bll of the inverse of B = 2 W, *
k=1
is given by
1 -
where B has been partitioned into
b1 Y1)
B = (A-14)
bi1) B2
Therefore the test statistic is given by
2
_ W
#aty - I:"[ ~ (A-15)
by - Bl1)B22 B(1)
The numerator can be seen as a noncentral chi-squared variate
|_v_l,,|2~ x2(2m;2)
with noncentrality parameter
- efu} efunf - efe} oo o0y}
=nyp D' Dy =nurgly (A-16)

By Theorem 4.3.3 of Anderson the denominator of (A-15) is seen to be
(central) chi-squared, independent of the numerator:

1,11 ~ x¥(2n-2m). (A-17)

Thus the ratio is an F-statistic, denoted

* _1 ( i
’ X (2n ;ﬁ) ) "T“' l:Z"I,Z(n-m)(")' (A-18)




Appendix B

Moments of the Random Signal Test Statistic

(A completely analogous derivation for real data is given by Anderson

(2].)

For n samples from an m-dimensional distribution of zero-mean, complex,

jointly Gaussian variables with covariance matrix I the sample covariance

A=ontt i XX - (B-1)

k=1
has the Wishart distribution [2, 3]

-%— X-IA‘ ’

p(Asn) = K (z,n) |A|"™ et

K (zm) 1 2™ MD/2 pnyptnen). .. (nemen) [z (B-2)

The moments therefore of

= [Agl/IAl 4 Ag = diag(all, azz,...amm> (B-3)
are given by
? E{zh}=“/hA|A0|h IAI'h p(A;sn)
fdA Km(z.n)lel AINTN etr -%Z'IA‘
] (z, n)
Kn-l(s",z—,rﬁrfd‘\ l'\olh p(Ain-h). (B-4)

Integrating first over the off-diagonal elements yields

el E?("'iin—i)' f dhg 1A!" polAgin-h),




sk a1

e e B

where po( ) is the joint pdf of the diagonal elements of A. For ¢ non-
diagonal this density is extremely complex in expression [9, 10]. However,

for

E = zo . = diag(oll’ 022,.-.,0"'“)’ (B-G)

these elements are independently distributed as

Py (2455 1-h) = Ky (5550 n-h) ay" " expf-ay /20,
(B-7)

and the integration is simple, producing

E{Zh}_ Kp(Zgom)

|
™

;
w

= |
]
b

[} I

(e

Q.

[T}
por}

-

-~
pry

Q
)

P
-
=3
1
=

[

-
-
3
—
m
x
b=
]

[+']
s
e

~

N

Q
-lo
-

et

m
- r(n-h)r(n-h-l)...r(n-h—m+1) [?rafg ] ) (8-8)
r{n)r(n-1)...r(n-m+1)
This expression may be further developed as
m
glzh} _ I'{n-h-i+1)r(n
{ } 33; r(n-i+1)r(n-h
- fr  Blocheisl, 4-1) (B-9)
i=2 B(n-i+1, i-1)

where the beta function is

B(a, b) = Ifair(b) (B-10)

r{a+b)

B




Appendix C

Effect of Correlation and Phase
on Multivariate Detection Parameter

From (4-10), the multivariate detection parameter (generalized
SNR) is given by
m m
= ir - -
Ay =1 E é oSS, cos(ei er)’ (c-1)
i=1 v=1 ‘

-1, . . . .
is the inverse of the intersensor noise covariance

where {cir} =z
matrix and the {Si, ei} are the amplitudes and phases of the signals
arriving at the sensors (or magnitude and phase of the DFT bin output).

If the phases are independent and uniformly distributed on some
interval (-a, a), then

E{cos(ei - er)} = éiffé . (c-2)

Thus we have
2 i 2 .
. +n Sina~ r -
Ee{AM} z $i° 2 2 Sisr o ., (Cc-3)

and the second term vanishes for A = ka. A random sensor placement therefore,
such as shown in Figure C-1, could cause the second term to drop out regard-
less of the covariance matrix structure.

If the covariance matrix £ can be represented by the case in which

the intersensor correlations are all equal, then

L= {P°1°r} =DRD., (c-4)
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a = £ .
(1-p)[1+{m-1)p]

In this instance the average detection parameter has the form

b} -8 75+ S 500,

i

=2nm SNRavg

x[8 + (m-l)a(

using
D0 = diag(ol, °2""’°m)
and
' . =1, 1=0rp
R = {&ir} L
hir =0, 1 ¢ 0r
For this special case
2-1 - D-l R-l D-l
o g
and
-2 .
irz Boi 9 1"‘
g afosa, 1 £ T
where
- 1+(m-2)p
(1-p)[1+(m-1)p]
and

sina

(C-5)

(c-6) %

(C-7)

(C-8)

(C-9a)

(C-9b)




Appendix D

Distribution of Sample Correlation Coefficient (Squared)

The elements of thésample covariance matrix 2n= A for m=2 have

the Wishart distribution

py(8) = K(Em) 1AM eerl- 3 57
K (z.n) = 22" «|z|"r(n)r(n-1).

Explicitly (D-1) is written

n-2
[ 1, 128

(211222 12121°) 515,
)

4

(D-1)

(D-2)

£

A) =
(M) 4" [odo5(1-0%) " r(mr(n-1)

Let a transformation of variables be defined by
2
1217721135,

a12r
= 4121
v = a2

The joint pdf of the new variables is

2 n 2)+3(1 )n zexn __B,JZ + pUCOSHO
Y1 vz

¥4 0102(1'02).

pz(z u,8,v) = K

In the next steps the unwanted variables are integrated out:

2n

2(n-2)+3 n-2
pz(z,u,e,v)de = 2yk U Ll:%l

0

- avy.

{D-5)




@ [- ]

n-2 .
0 Z 0

n-2 2
r{n)=K (A-2) 7=l ey nsl; LY2) = p (2, V)
Bn 11 4

n-2 2

T R
c:~."\8

F(n) (1 pZ)n (1 Z)n -2

12025 =
Fl(n9nplgp Z) ps(z)
(D-8)
The complementary cumulative distribution function for z is

computed as follows:

Pr{z 2 n}

dz p(z)

0

N«

1
2
=/%r1‘—:-§-ﬂln(n-1)!-[ dz (1-2)"2 2Fl(n.n;l;pzz)
1
n 2 ] (n 1)! Z;W (n) (n)k/ dz zk(l 2)™ -2

1-02)" ' - o2k
e ) ("'1)-2;rm (m) (n), BkHL, D)Ly (n-1 , ke1)
k=
(0-9)

or

2nw 2k
(1-0°) g () 1) n(n-1, k1) (D-10)

Q,(n)
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V1sV2
1Fplasbsx)
2F1(a,b;c;x)
H., H
I
Ix(a,b)
J
A(X)

0* "1

A
m
MDS
ML
MPG

Glossary of Notation

real part of mean vector

sample covariance matrix (2nE)
imaginary part of mean vector
Bernoulli polynomial

beta function

determinant of the matrix B

discrete Fourier transform
mathematical expectation of quantity x
exp{tr(B)}

matrix of DFT components

F-statistic with degrees of freedom v; and v,
confluent hypergeometric function
Gaussian hypergeometric function
hypotheses

jdentity matrix

Pearson's incomplete beta function
/-1

1ikelihood ratio value

noncentrality parameter, detection parameter
number of sensors

minimum detectable signal

maximum Tikelihood

multivariate processing'gain

mean vector

number of samples

probability density function
probability of detection
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PFA
Pr{A}

Q (2)
ROC

>
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probability of false alarm

~ probability of event A

probability integral

receiver operating characteristics
correlation coefficient

covariance matrix

signal-to-noise ratio

trace of matrix B

real part of data vector, matrix
imaginary part of data vector, matrix
data vector, matrix

statistic, test value

estimated value

column vector

transpose of vector, matrix
conjugate transpose of vector, matrix

determinant of matrix B

magnitude of vector
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